
Radiation I [lln19]

Electric charges at rest generate a time-independent electric field. Steady
currents generate a time-independent magnetic field.

A charged particle moving at constants velocity produces electric and mag-
netic fields that move along with the particle in a time-independent pattern.

It takes electric charges in accelerated motion to produce radiation – an
electromagnetic wave propagating away from its source. Alternating currents
are one realization of electric charges in accelerated motion.

D’Alembert equations for scalar and vector potentials:

We start from Maxwell’s equations for the electric field E and magnetic field
B in the presence of ideal sources ρ (charge density) and J (current density),

[lln15]

∇ · E =
ρ

ε0
, ∇× E = −∂B

∂t
,

∇ ·B = 0, ∇×B = µ0

(
J + ε0

∂E

∂t

)
,

and their transcription into the D’Alembert equations,

−∇2Φ +
1

c2
∂2Φ

∂t2
=

ρ

ε0
, −∇2A +

1

c2
∂2A

∂t2
= µ0J, (1)

for the scalar potential Φ and vector potential A in the Lorenz gauge and
the sources satisfying the continuity equation:

∇ ·A = − 1

c2
∂Φ

∂t
, ∇ · J = −∂ρ

∂t
.

Earlier analysis for time-independent situations:[lln5][ln12]

– Poisson equations: −∇2Φ(x) =
ρ(x)

ε0
, −∇2A(x) = µ0J(x)

– Mathematical identity: ∇2

(
1

|x− x′|

)
= −4πδ(x− x′),

– Scalar potential: Φ(x) =
1

4πε0

∫
d3x′

ρ(x′)

|x− x′|
.

– Vector potential: A(x) =
µ0

4π

∫
d3x′

J(x′)

|x− x′|
.

– Conditions for ources: ∇ · J = 0,
∂ρ

∂t
= 0.
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Retarded potentials:

Generalization to situations with harmonic time-dependence (artificial from
a physical perspective, but useful from a mathematical perspective):

– Oscillating charge density: ρ(x, t) = ρ̃(x)e−ıωt.

– Ansatz for scalar potential: Φ(x, t) = Φ̃(x)e−ıωt.

– D’Alembert equation becomes Helmholtz equation:

−∇2Φ +
1

c2
∂2Φ

∂t2
=

ρ

ε0
⇒ − (∇2 + k2)Φ̃(x) =

ρ̃(x)

ε0
, k =

ω

c
.

– Linear (differential) operator: L .
= −(∇2 + k2).

– Green’s function associated with Helmholtz equation: [lex111]

LG(x− x′) = 4πδ(x− x′) ⇒ G(x− x′) =
eık|x−x

′|

|x− x′|
.

– Solution of Helmholtz equation: Φ̃(x) =
1

4πε0

∫
d3x′G(x− x′)ρ̃(x′).

⇒ LΦ̃(x) =
1

4πε0

∫
d3x′ LG(x− x′)︸ ︷︷ ︸

4π(δ(x−x′)

ρ̃(x′) =
ρ̃(x)

ε0
.

– Scalar potential inferred from this solution:

Φ(x, t) =
1

4πε0

∫
d3x′

ρ̃(x′)

|x− x′|
e−ıωt+ık(x−x

′) =
1

4πε0

∫
d3x′

ρ(x′, t′)

|x− x′|
.

– Retarded time: −ıωt+ ık(x− x′)
.
= −ıωt′ ⇒ t′ = t− |x− x′|

c
.

– Current density: J(x, t) = J̃(x)e−ıωt.

– Vector potential: A(x, t) =
µ0

4π

∫
d3x′

J(x′, t′)

|x− x′|
.

– Condition for sources: ∇ · J̃ = ıωρ̃.
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Fourier integrals:

Generalization to situations with unrestricted time evolution.

The superposition of solutions oscillating at different frequencies can be ex-
pressed as a Fourier integral.

– Charge density and current density:

ρ(x, t) =

∫ +∞

−∞
dω ρ̃(x, ω)e−ıωt ⇔ ρ̃(x, ω) =

1

2π

∫
dt ρ(x, t)eıωt,

J(x, t) =

∫ +∞

−∞
dω J̃(x, ω)e−ıωt ⇔ J̃(x, ω) =

1

2π

∫
dtJ(x, t)eıωt,

– Superposition principle applied to scalar and vector potentials:

Φ(x, t) =
1

4πε0

∫ +∞

−∞
dω e−ıωt

∫
d3x′eık|x−x

′| ρ̃(x′, ω)

|x− x′|
k=ω/c

=
1

4πε0

∫
d3x′

1

|x− x′|

∫ +∞

−∞
dω e−ıω(t−|x−x

′|/c)ρ̃(x′, ω)

=
1

4πε0

∫
d3x′

ρ(x′, t− |x− x′|/c)
|x− x′|

(2)

A(x, t) =
1

4πε0

∫ +∞

−∞
dω e−ıωt

∫
d3x′eık|x−x

′| J̃(x′, ω)

|x− x′|
k=ω/c

=
1

4πε0

∫
d3x′

1

|x− x′|

∫ +∞

−∞
dω e−ıω(t−|x−x

′|/c)J̃(x′, ω)

=
1

4πε0

∫
d3x′

J(x′, t− |x− x′|/c)
|x− x′|

(3)

[lex112]

– Retardation: t′ = t− |x− x′|
c

.

– Condition for sources: ∇′ · J̃(x′, t′) = − ∂

∂t
ρ(x′, t′).

The potentials Φ and A at field point x and time t depend on the sources
ρ and J, respectively, at source point x′ and delayed time t′, which depends
on the distance |x− x′|.

The usefulness of solutions (2) and (3) of the D’Alembert equations (1) is
limited to situations for which the potentials are caused by known sources.

In general, sources and potentials (and the fields derived from the potentials)
perform an interactive dance with time-delayed causations both ways.
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Radiation from electric dipole:

The general integral expressions for the retarded potentials Φ(x, t) and A(x, t)
are the basis of antenna theory – a broad area of electrical engineering.

The structure of electric and magnetic fields changes with distance from the
source of radiation. The radiation zone – far away from the source – is of
primary interest in most applications.

Prototype radiation source: a very localized region of current density J(x′, t).

Analysis of field expressions at large distances |x| .
= r from the source

(asymptotic regime, |x| � r̂ · x′).

1

|x− x′|
' 1

|x| − r̂ · x′

=
1

|x|
1

1− r̂ · x′/|x|

' 1

|x|

(
1 +

r̂ · x′

|x|

)
.
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Integral expression for asymptotic vector potential:

A(x, t)as =
µ0

4πr

∫
d3x′ J(x′, tr), tr

.
= t− r

c
.

The variation of the retarded time tr across the source is disregarded. This
assumption is justified if the wavelength of the radiation is large compared
to the size of the source.

In electrostatics, electric dipoles originate in charge densities. In electrody-[lln5]

namics, charge densities ρ(x, t) and current densities J(x, t) are related to
each other by the continuity equation.[lln15]

In consequence, the time-dependence of electric dipoles can be inferred from
ρ(x, t) or from J(x, t): [lex113]

p(t) =

∫
d3x′ x′ρ(x′, t),

d

dt
p(t) =

∫
d3x′ J(x′, t).

Asymptotic vector potential from electric dipole moment:

⇒ A(x, t)as =
µ0

4πr

dp

dt

∣∣∣∣
tr

, tr
.
= t− r

c
.

4



Magnetic radiation field from B(x, t)as = ∇×A(x, t)rad.

[lex114]

– Ignore spatial derivatives acting on factors 1/r. They yield contribu-
tions which are negligible in radiation zone.

– Transform curl using chain rule: ∇× dp

dt

∣∣∣∣
tr

= ∇tr ×
d2p

dt2

∣∣∣∣
tr

.

– Evaluate gradient: ∇tr = − r̂

c
.

– Radiation magnetic field: B(x, t)rad = − µ0

4πrc
r̂× d2p

dt2

∣∣∣∣
tr

.

Scalar potential inferred from Lorentz gauge condition: [lex115]

∂

∂t
Φ = −c2∇ ·A ⇒ Φ(x, t)rad =

µ0c

4πr
r̂ · dp

dt

∣∣∣∣
tr

.

Electric radiation field from E = cB× r̂ or E = −∂A
∂t
−∇Φ: [lex222][lex223]

E(x, t)rad =
µ0

4πr

[
r̂

(
r̂ · d

2p

dt2

∣∣∣∣
tr

)
− d2p

dt2

∣∣∣∣
tr

]
.

The transverse direction of the radiation fields follows from the vanishing
scalar products, E(x, t)rad · r̂ = 0 and B(x, t)rad · r̂ = 0.

Notice that the ∼ r−1 dependence of the (asymptotic) electric radiation field
due to a dynamic electric dipole is different from the ∼ r−3 dependence of
the electric field generated by a static electric dipole.

Poynting vector from S =
1

µ0

E×B: [lex116]

S(x, t)rad =
µ0/c

(4πr)2

[(
d2p

dt2

∣∣∣∣
tr

)2

−
(
r̂ · d

2p

dt2

∣∣∣∣
tr

)2
]
r̂.

Notice the radial direction of S in the radiation zone.

Total power of radiation from P (r, t) =

∮
dΩ r2 r̂ · S(x, t)rad: [lex116]

⇒ P (t) =
µ0

6πc

(
d2p

dt2

∣∣∣∣
tr

)2

.

Energy conservation makes this quantity independent of distance.
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Hertzian dipole (special case):

Harmonically oscillating electric dipole moment placed at the origin of a
spherical coordinate system, oscillating in ±z-direction (North-South at the
center of a sphere):

p(t) = p0 cos(ωt) ẑ.

Magnetic radiation field (directed East-West on the surface of the sphere):

Bed(x, t)rad = − µ0

4πrc
r̂× d2p

dt2

∣∣∣∣
tr

= −µ0ω
2p0

4πrc
sin θ cos(ωtr) φ̂.

Electric radiation field (directed South-North on the surface of the sphere):

Eed(x, t)rad = cBed(x, t)rad × r̂ = −µ0ω
2p0

4πr
sin θ cos(ωtr) θ̂.

Poynting vector (directed radially outward):

Sed(x, t)rad =
1

µ0

Eed(x, t)rad ×Bed(x, t)rad =
µ0ω

4p20
(4πr)2c

sin2 θ cos2(ωtr) r̂.

Intensity (average power per unit area transported locally):

Ied
.
= 〈|Sed|〉 =

µ0ω
4p20

(4πr)2c
sin2 θ 〈cos2(ωtr)〉︸ ︷︷ ︸

1/2

.

Differential power (transported per solid angle):

dP
(ed)
av

dΩ
= r2 r̂ · 〈|Sed|〉 =

µ0ω
4p20

32π2c
sin2 θ =

3P
(ed)
av

8π
sin2 θ.

Average power (averaged over directions): [lex117]

P (ed)
av

.
= 2π

∫ π

0

dθ sin θ
dP

(ed)
av

dΩ
=
µ0ω

4p20
16πc

∫ π

0

dθ sin3 θ︸ ︷︷ ︸
4/3

=
µ0ω

4p20
12πc

.

r̂× ẑ = −φ̂ sin θ

φ̂× r̂ = θ̂

θ̂ × φ̂ = r̂

4

Z"
t̂.
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Radiation from magnetic dipole:

A conducting loop of area A carrying an alternating current I(t) emits mag-
netic dipole radiation.

– Small flat loop of area A in xy-plane at origin of coordinate system.

– Alternating current: I(t) = I0e
−ıωt.

– Electric dipole is absent: p(t) ≡ 0.

– Magnetic dipole moment: m(t) = AI0e
−ıωt ẑ = m0e

−ıωt ẑ.

– The vector m(t) is oscillating up-down at the center of a sphere.

– Assumption that loop is small:
√
A� λ = 2πc/ω.

– Vector potential from (2): A(x, t) =
µ0

4π

∫
d3x′

J(x′, t− |x− x′|/c)
|x− x′|

.

– Current density expanded using |x− x′| ' r − x′ · r̂:

J(x′, t− |x− x′|/c) = J(x′, tr) +
x′ · r̂
c

∂

∂tr
J(x′, tr), tr = t− r

c
.

– First integral vanishes if ρ ≡ 0 [lex113]:

∫
d3x′ J(x′, tr) =

dp

dt

∣∣∣∣
tr

= 0. [lex113]

– Result from earlier:

∫
d3x′ (x′ · r̂)J(x′, tr) = m(tr)× r̂.[lln12]

– Second integral evaluated in steps, using ẑ× r̂ = φ̂ sin θ:

Amd(x, t)rad =
µ0

4πrc

∫
d3x′ (x′ · r̂) ∂

∂tr
J(x′, tr) =

µ0

4πrc

∂

∂tr
m(tr)× r̂

= − ıωµ0

4πrc
m(tr)× r̂ = − ıµ0ωm0

4πrc
e−ıω(t−r/c) sin θ φ̂.

Radiation vector potentials generated by electric and magnetic dipoles:

Aed(x, t)rad = − ıµ0ωp0
4πr

e−ıω(t−r/c) ẑ,

Amd(x, t)rad = − ıµ0ωm0

4πrc
e−ıω(t−r/c) sin θ φ̂︸ ︷︷ ︸

ẑ×r̂

=
m0

cp0
Aed(x, t)rad × r̂.

The relative power of radiation sources originating in electric and magnetic
dipoles is controlled by the dimensionless ratio, m0/cp0.

In sources with p0 > 0, the dominant role is likely taken by the electric dipole.
The contribution of the magnetic dipole is suppressed by a factor c.
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Radiation fields of magnetic dipole:

Emd(x, t)rad =
m0

cp0
Eed(x, t)rad × r̂ =

µ0ω
2m0

4πrc
sin θ cos(ωtr) φ̂,

Bmd(x, t)rad =
m0

cp0
Bed(x, t)rad × r̂ = −µ0ω

2m0

4πrc2
sin θ cos(ωtr) θ̂.

φ̂× r̂ = θ̂

θ̂ × r̂ = −φ̂

4
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Poynting vector (directed radially outward):

Smd(x, t)rad =
1

µ0

Emd(x, t)rad ×Bmd(x, t)rad =
µ0ω

4m2
0

(4πr)2c3
sin2 θ cos2(ωtr) r̂.

Intensity (average power per unit area transported locally):

Imd
.
= 〈|Smd|〉 =

µ0ω
4m2

0

(4πr)2c3
sin2 θ 〈cos2(ωtr)〉︸ ︷︷ ︸

1/2

.

Differential power (transported per solid angle):

dP
(md)
av

dΩ
= r2 r̂ · 〈|Smd|〉 =

µ0ω
4m2

0

32π2c3
sin2 θ =

3P
(md)
av

8π
sin2 θ.

Average power (averaged over directions): [lex117]

P (md)
av

.
= 2π

∫ π

0

dθ sin θ
dP

(md)
av

dΩ
=
µ0ω

4m2
0

16πc3

∫ π

0

dθ sin3 θ︸ ︷︷ ︸
4/3

=
µ0ω

4m2
0

12πc3
.
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Electric dipole radiation at arbitrary distance:

Electric dipole is still treated as point source (indicated by subscript as). The
distance r between source and field points compared the wavelength λ can
be large (indicated by subscript rad), small, or comparable.

– Point-like electric dipole: p(t) = p(t) ẑ.

– Asymptotic vector potential: A(x, t)as =
µ0

4πr

dp

dt

∣∣∣∣
tr

, tr = t− r

c
.

– Conversion to spherical coordinates:

A(x, t)as =
µ0

4πr
p′(tr) ẑ =

µ0

4πr
p′(tr)

[
cos θ r̂− sin θ θ̂

]
.

– Asymptotic magnetic field from B = ∇×A: [lex224]

B(x, t)as =
µ0

4π

[
p′′(tr)

cr
+
p′(tr)

r2

]
sin θ φ̂.

– Asymptotic electric field from Ampère’s law,
∂E

∂t
= c2∇×B: [lex224]

∂

∂t
E(x, t)as =

µ0c
2

4π

[
cos θ

(
2p′(tr)

r3
+

2p′′(tr)

cr2

)
r̂

+ sin θ

(
p′(tr)

r3
+
p′′(tr)

cr2
+
p′′′(tr)

c2r

)
θ̂

]
.

⇒ E(x, t)as =
µ0c

2

4π

[
cos θ

(
2p(tr)

r3
+

2p′(tr)

cr2

)
r̂

+ sin θ

(
p(tr)

r3
+
p′(tr)

cr2
+
p′′(tr)

c2r

)
θ̂

]
.

– Far-field regime: terms of order p′′/r are dominant. Such terms exist in
E and B. Both fields are transverse to radial direction of propagation.
This is the radiation zone.

– Near-field regime: The dominant term is of order p/r3, which exist only
for E. It reflects the instantaneous electric field of an electric dipole. [lex224]

– Intermediate-field regime: Here the configuration of electric and mag-
netic fields is more complex.
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Half-wave linear antenna:

Antenna has length `. It is positioned with its center at the origin of the
coordinate system and oriented along the z-axis. It carries a (model) current,

I(z, t) = I0 cos(kz) sin(ωt), k =
π

`
, ω = kc =

πc

`
.

The relation λ
.
= 2π/k = 2` expresses a resonance condition.

t ?.

a* -r. R
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\ L

Vector potential expression adapted:

A(x, t) =
µ0

4π

∫ +`/2

−`/2
dz′

I
(
z′, t−R(z′)/c

)
R(z′)

k̂, R(z′)
.
=
√
r2 − 2rz′ cos θ + z′2.

Far-field regime: R(z′) ' r − z′ cos θ,
1

R(z′)
' 1

r
.

Vector potential in radiation zone, using ` = π/k:

A(x, t)rad =
µ0

4πr

∫ +`/2

−`/2
dz′I

(
z′, t− r − z′ cos θ

c

)
ẑ

=
µ0I0
4πr

∫ +`/2

−`/2
dz′ cos(kz′) sin(ωt− kr − kz′ cos θ) ẑ

= − µ0I0
2πkr

cos
(
π
2

cos θ
)

sin2 θ
sin(kr − ωt) ẑ.

Radiation fields and Poynting vector: [lex118]

B(x, t)rad = ∇×A(x, t)rad =
µ0I0
2πr

cos
(
π
2

cos θ
)

sin θ
cos(kr − ωt) φ̂,

E(x, t)rad = cB(x, t)rad × r̂ =
cµ0I0
2πr

cos
(
π
2

cos θ
)

sin θ
cos(kr − ωt) θ̂,

S(x, t)rad =
1

µ0

E×B =
cµ0I

2
0

4π2r2

(
cos
(
π
2

cos θ
)

sin θ

)2

cos2(kr − ωt) r̂.
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Radiation from an accelerated charged particle:

A particle with electric charge q has instantaneous position xq(t).

– Particle velocity and acceleration: v =
dxq
dt

, a =
dv

dt
.

– Charge density: ρ(x, t) = qδ
(
x− xq(t)

)
.

– Current density: J(x, t) = qv(t)δ
(
x− xq(t)

)
.

– Continuity equation, ∇ · J +
∂ρ

∂t
= 0, is satisfied:

∇ · v = 0 ⇒ ∇ · J = qv · δ
(
x− xq(t)

)
,
∂ρ

∂t
= q∇δ

(
x− xq(t)

)
· (−v).

– Electric dipole moment: p(t)
.
=

∫
d3xxρ(x, t) = qxq(t).

– Distance vector between source and field point: R(tr)
.
= x− xq(tr).

– Retarded time from tr = t− |R(tr)|/c.
– Magnetic radiation field from earlier expression for electric dipole:

B(x, t)rad = − µ0

4πrc
R̂× d2p

dt2

∣∣∣∣
tr

= −µ0q

4πc

R̂(tr)× a(tr)

R(tr)
.

– Electric radiation field: E(x, t)rad = cB(x, t)rad × R̂(tr).

– Poynting vector: [lex119]

S(x, t)rad
.
=

1

µ0

E(x, t)rad ×B(x, t)rad =
µ0q

2

(4π)2R2c

[
a2 −

(
a · R̂

)2]
R̂.

– Instantaneous power radiated: P (t) = R2(tr)

∮
dΩS(t) · R̂(tr).

– Larmor formula: P (t) =
1

4πε0

2q2a2(tr)

3c3
. [lex119]
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E

-J}

S

E

-.b
*.+
o.

*

Ro

11



Light scattering from bound charged particle:

An incident plane electromagnetic wave agitates a charged particle (e.g. an
electron with mass m and charge −e) bound to a location in space (e.g. an
atom in a crystal).

The resulting accelerated motion of the charged particle generates a radial
wave with a specific angular profile (in the radiation zone). Effectively, light
is scattered by matter.
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Model analyzed in the following: damped harmonic oscillator driven by pass-
ing plane electromagnetic wave.

– Oscillating electric field of incident plane wave at position of charged
particle: E0e

−ıωt î (dominant driving force).

– Equation of motion: m
d2x

dt2
= −Kx− γ dx

dt
− eE0e

−ıωt.

– Natural frequency of oscillation: ω0
.
=
√

K
m

(resonance frequency).

– Steady state solution of this linear ODE (e.g. via Fourier analysis):

x(t) = <
[

−eE0e
−ıωt

m(ω2
0 − ω2)− ıγω

]
=
−eE0m(ω2

0 − ω2)

m2(ω2
0 − ω2)2 + γ2ω2

cos(ωt) +
−eE0γω

m2(ω2
0 − ω2)2 + γ2ω2

sin(ωt).

– Acceleration: a(t) =
d2x

dt2

⇒ a(t) =
eE0ω

2(ω2
0 − ω2)

m2(ω2
0 − ω2)2 + γ2ω2

cos(ωt)+
eE0γω

3

m2(ω2
0 − ω2)2 + γ2ω2

sin(ωt).
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– Average power radiated as predicted by Larmor formula:1

Pav = 〈P (t)〉 =
e4E2

0ω
4

12πε0c3[m2(ω2
0 − ω2)2 + γ2ω2]

.

– Classical electron radius:2 re
.
=

e2

4πε0mc2
' 2.8× 10−15m.

– Incident beam intensity from earlier: 〈|S|〉 =
E0B0

2µ0

=
1

2
cε0E

2
0 .[lln15]

– Scattering cross section defined as average power radiated per incident
beam intensity:

σ
.
=

Pav

〈|S|〉
=

8πr2e
3

ω4

(ω2
0 − ω2)2 + (γω/m)2

.

– Rayleigh scattering (ω � ω0): σRay =
8πr2e

3

(
ω

ω0

)4

.

– Resonant scattering (ω ' ω0): sharply peaked for γ/m� ω0.

– Thomson scattering(ω � ω0): σTho =
8πr2e

3
' 6.6× 10−29m2.

Rayleigh scattering explains why the sky is blue and the sunset red. For
Thomson scattering the binding and the damping are negligible; the charged
particles respond as if they are free.

At yet higher frequencies (~ω ' mc2), quantum effects become critically
important. This is the regime of Compton scattering.

1For the time averaging we use 〈cos2(ωt)〉 = 〈sin2(ωt)〉 = 1
2 .

2The classical electron radius is an artificial construct. The electron is assumed to be a
sphere of radius re with charge −e uniformly distributed across its surface. The electro-
static self-energy e2/(4πε0re) is then equated with its rest energy mc2.
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