
Optics II [lln18]

Wave guides and transmission lines operate in the microwave range. Applica-
tions include radar, cellphone communication, TV broadcast signals, cavities,
among others. Wave guides involve continual interactions between fields and
charges. Geometry matters a great deal.

Electromagnetic wave between parallel conducting plates:

Region of space delimited by perfect conductors at y = 0 and y = b.

Harmonic electromagnetic wave traveling in z-direction:

E(x, t) =
[
Ex(y) î + Ey(y) ĵ + Ez(y) k̂

]
eı(kz−ωt),

B(x, t) =
[
Bx(y) î +By(y) ĵ +Bz(y) k̂

]
eı(kz−ωt).

Maxwell’s equations and boundary conditions im-
pose constraints on the six amplitudes in these gen-
eral expressions.
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Harmonic waves have a single wavelength. More general waves are superpo-
sitions of harmonic waves.

TEM wave:

In a bounded space, waves that are transverse electric and magnetic (TEM)
in the sense that Ez(y) = Bz(y) ≡ 0 are an option, not a necessity as is the
case in unbounded space (see [lln15]).

A plane-wave solution exists with E directed perpendicular to the plate,
which requires B to be directed parallel to the plates.

Ansatz: E(x, t) = E0 cos(kz − ωt) ĵ, B(x, t) = −B0 cos(kz − ωt) î.

Boundary conditions for E‖ and B⊥ are guaranteed: ∆E‖ = 0, ∆B⊥ = 0.

Wave travels in direction ĵ× (−î) = k̂ with speed c.

Gauss’s laws, ∇ · E = 0, ∇ ·B = 0, are satisfied without further conditions.

Faraday’s and Ampère’s laws: ∇× E = −∂B
∂t
, c2∇×B =

∂E

∂t
.

Resulting conditions:
E0

B0

=
ω

k
= c.

Poynting vector: S(x, t)
.
=

1

µ0

E×B =
E2

0

µ0c
cos2(kz − ωt) k̂.
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Boundary condition for E⊥ implies surface charges on plates:

Surface charge density [lln6]: σ = ε0 n̂ · E.

y = 0 : σ = ε0Ey = ε0E0 cos(kz − ωt),
y = b : σ = −ε0Ey = −ε0E0 cos(kz − ωt).

Boundary condition for B‖ implies surface currents on plates:

Surface current density [lln13]: K =
1

µ0

n̂×B.

y = 0 : Kz = −Bx

µ0

= +
E0

µ0c
cos(kz − ωt),

y = b : Kz = +
Bx

µ0

= − E0

µ0c
cos(kz − ωt).
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TE wave:

Ansatz: E(x, t) = Ex(y)eı(kz−ωt) î (parallel to the conducting surfaces).

Gauss’s law, ∇ · E = 0, is guaranteed.

Faraday’s law:1
∂B

∂t
= −∇× E ⇒ − ıωB = −∇× E

∇× E = Ex
∂

∂z
eı(kz−ωt)ĵ− ∂Ex

∂y
eı(kz−ωt)k̂ =

[
ıkEx(y)̂j− E ′x(y)k̂

]
eı(kz−ωt)

⇒ B(x, t) =

[
k

ω
Ex(y) ĵ +

ı

ω
E ′x(y) k̂

]
eı(kz−ωt).

Gauss’s law, ∇ ·B = 0, follows from the identity ∇ · (∇× E) = 0.

1The factor e−ıωt must be common to both fields of the same wave.
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Ampère’s law,
∂E

∂t
= c2∇×B, imposes restrictions on Ex(y) and ω(k):

∇×B =

[
ı

ω

∂E ′x
∂y

eı(kz−ωt) − k

ω
Ex

∂

∂z
eı(kz−ωt)

]
î

⇒ − ıωEx(y) = ı
c2

ω

[
E ′′x(y)− k2Ex(y)

]
⇒ E ′′x(y) = −

(
ω2

c2
− k2

)
Ex(y).

Ansatz for general solution: Ex(y) = c1 sin(νy) + c2 cos(νy)

⇒ E ′′x(y) = −ν2Ex(y),
ω2

c2
= k2 + ν2.

Boundary conditions for E‖ at surface of perfect conductor: Ex(0) = Ex(b) = 0

⇒ c2 = 0, νb = nπ ⇒ Ex(y) = E0 sin
(nπy

b

)
.

Dispersion relation:2
ω2

c2
= k2 +

(nπ
b

)2
, n = 1, 2, . . ..

TE(n) mode of TE wave:3

E(x, t) = E0 sin
(nπy

b

)
eı(kz−ωt) î, (1)

B(x, t) =

[
k

ω
E0 sin

(nπy
b

)
ĵ + ı

nπ

bω
E0 cos

(nπy
b

)
k̂

]
eı(kz−ωt). (2)

Boundary condition for B⊥ at the surface of a perfect conductor, By(0) =
By(b) = 0, is guaranteed with no further conditions.

The TE wave is translationally invariant in x-direction. It is a traveling wave
in z-direction and has standing-wave characteristics in y-direction.

The magnetic field in y-direction is in phase with the electric field (in x-
direction). The magnetic field in z-direction is phase shifted by 90◦.

Phase velocity and group velocity are different [lex172]:

vph
.
=
ω

k
=

cω√
ω2 −

(
nπc
b

)2 , vgr
.
=
dω

dk
=
c

ω

√
ω2 −

(nπc
b

)2
.

2The angular frequency must exceed the threshold value nπ/b.
3The physical fields are the real parts of the complex field expressions.
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– Phase velocity: phase point in eı(kz−ωt) moves at velocity δz/δt = ω/k.

– Group velocity: velocity of signals and energy transport.

Boundary condition for E⊥:

– The solution (1) has E⊥ = 0 at y = 0 and y = b.

– Implication: zero surface charge density on the surfaces of the perfect
conductors at all times (σ ≡ 0).

Boundary condition for B‖ implies surface currents, K =
1

µ0

n̂×B:

Kl = +
Bz(x, 0, z, t)

µ0

î = −nπE0

µ0bω
sin(kz − ωt) î,

Ku = −Bz(x, b, z, t)

µ0

î = (−1)n
nπE0

µ0bω
sin(kz − ωt) î.

hfu

k u
*a

,e
n ,r*J ^IK

$*y,\
a

Lfif
-*3

*)
B

G-+
-h_. d/*

t

--+-rl)
B

Field strengths:

Ex and By are strongest in the center,

Bz is strongest near the plates.
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Energy transport in TE wave:

Poynting vector: S
.
=

1

µ0

E×B with fields from (1) and (2)

⇒ S(x, t) =
kE2

0

µ0ω

[
sin2

(nπy
b

)
cos2(kz − ωt) k̂

+
nπ

kb
sin
(nπy

b

)
cos
(nπy

b

)
sin(kz − ωt) cos(kz − ωt) ĵ

]
.

Energy transport at given position x has a positive k̂-component and an
oscillating ĵ-component.

Average power per unit area transported by TE wave:

S̄ =
ω

2π

∫ 2π/ω

0

dtS(x, t) =
kE2

0

2µ0ω
sin2

(nπy
b

)
k̂.

Power P per unit (lateral) distance dx carried by TE wave:4

dP

dx
=

∫ b

0

dy S̄ · k̂ =
E2

0

2µ0

k

ω

b

2
=

bE2
0

4µ0c2
vgr.

Geometrical interpretation of phase/group velocities:

The power is transported at the group velocity vgr in k̂-direction. The wave

fronts advance in k̂-direction with the higher phase velocity vph as the wave
fronts zig-zag between the conductors.

The TE wave travels in a zig-zag manner up and down and toward the right.
It is periodically reflected at the conducting plates.

At the threshold frequency ω → nπc/b, realized for α → π/2, the phase
velocity diverges and the group velocity approaches zero: the wave fronts
become parallel to the walls.
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4We use the relation vphvgr = c2 derived in [lex172] for this case.
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TM wave:

Ansatz: B(x, t) = Bx(y)eı(kz−ωt) î (parallel to the conducting surfaces).

Gauss’s law, ∇ ·B = 0, is guaranteed.

Boundary condition for B⊥ at surface of perfect conductor, By(0) = By(b) = 0,
is guaranteed by construction.

Electric field from Ampère’s law: c2∇×B =
∂E

∂t
= −ıωE.

∇×B = Bx
∂

∂z
eı(kz−ωt)ĵ− ∂Bx

∂y
eı(kz−ωt)k̂ =

[
ıkBx(y)̂j−B′x(y)k̂

]
eı(kz−ωt)

⇒ E(x, t) = −c
2

ω

[
kBx(y) ĵ + ıB′x(y) k̂

]
eı(kz−ωt).

Gauss’s law, ∇ · E = 0, follows from the identity ∇ · (∇×B) = 0.

Wave equation for magnetic field constrains profile of Bx(y):5

∇2B =
1

c2
∂2B

∂t2
, ⇒ B′′x(y) = −

(
ω2

c2
− k2

)
Bx(y).

Ansatz for general solution: Bx(y) = c1 sin(νy) + c2 cos(νy)

⇒ B′′x(y) = −ν2Bx(y),
ω2

c2
= k2 + ν2.

Boundary conditions for E‖ at surface of perfect conductor, Ez(0) = Ez(b) = 0.

⇒ c1 = 0, νb = nπ ⇒ Bx(y) = B0 cos
(nπy

b

)
.

Dispersion relation:
ω2

c2
= k2 +

(nπ
b

)2
, n = 1, 2, . . . (as for TE wave).

Phase velocity vph and group velocity vgr are unchanged as well.

TM(n) mode of TM wave:6

B(x, t) = B0 cos
(nπy

b

)
eı(kz−ωt) î, (3)

E(x, t) = −c
2k

ω
B0

[
cos
(nπy

b

)
ĵ− ınλ

2b
sin
(nπy

b

)
k̂

]
eı(kz−ωt). (4)

5This step is equivalent to invoking Faraday’s law.
6The TEM wave is recovered by setting n = 0.
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Discontinuity of B‖ implies surface currents, K =
1

µ0

n̂×B:

Kl = −Bx(x, 0, z, t)

µ0

k̂ = −B0

µ0

cos(kz − ωt) k̂,

Ku =
Bz(x, b, z, t)

µ0

k̂ = −(−1)n
B0

µ0

cos(kz − ωt) k̂.
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Discontinuity of E⊥ implies surface charges, σ = ε0 n̂ · E:

σl = ε0Ey(x, 0, z, t) = −ε0c
2k

ω
B0 cos(kz − ωt),

σu = −ε0Ey(x, b, z, t) = (−1)n
ε0c

2k

ω
B0 cos(kz − ωt).
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Field strengths:

Ez is strongest in the center,

Bx and Ey are strongest near the plates.

Energy transport in TM wave:

Poynting vector: S
.
=

1

µ0

E×B from fields (3) and (4):

⇒ S(x, t) =
c2kB2

0

µ0ω

[
cos2

(nπy
b

)
cos2(kz − ωt) k̂

− nλ

2b
sin
(nπy

b

)
cos
(nπy

b

)
sin(kz − ωt) cos(kz − ωt) ĵ

]
.
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Energy transport has again a non-negative part in positive z-direction and
an oscillatory part in y-direction.

In the TE(1) mode, the energy transport was highest at the midpoint between
the conductor. In the TM(1) mode it is highest near the conductors.

Average power per unit area transported by TM wave:

S̄
.
=

ω

2π

∫ 2π/ω

0

dtS(x, t) =
c2kB2

0

2µ0ω
cos2

(nπy
b

)
k̂.

Salient features of TE and TM waves guided by parallel conducting plates:

– The presence of longitudinal fields signals a more complex pattern of
wave propagation.

– Waves are characterized as discrete sets of modes, where each mode
has a distinct dispersion ω(k) with a distinct threshold frequency.

– The Poynting vector changes direction periodically, in a zigzag pattern.
The wave front is in continual reflection from both walls.

– The zigzag wave propagation slows down the energy transport along the
wave guide. The group velocity decreases whereas the phase velocity
increases.

– The wave induces surface charges and surface currents on the conduc-
tors. This is the cause of attenuation if the walls are less than perfect
conductors.

Rectangular wave guide:

The region at 0 < x < a, 0 < y < b, −∞ < z < +∞ is surrounded by perfect
conductors.

No TEM mode exists in this region.7 Discrete TE and TM modes do exist.
Each such mode is described by two integer quantum numbers n,m.
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7The general condition for the existene of TEM modes will be discussed later.
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TE modes:

General TE expression: E(x, t) =
[
Ex(x, y) î + Ey(x, y) ĵ

]
eı(kz−ωt).

Ansatz that satisfies Gauss’s law, ∇ · E = 0, by construction:

E = ∇×
[
− ψ(x, y)eı(kz−ωt) k̂

]
=

[
∂

∂x
ψ(x, y) ĵ− ∂

∂y
ψ(x, y) î

]
eı(kz−ωt).

The requirement that this expression satisfies the wave equation, can be met
by a function ψ(x, y) that satisfies the Helmholtz equation in two dimensions:

∇2E− ∂2E

∂t2
= 0

[lex104]⇒ ∇2ψ = −γ2ψ, γ2 = +
ω2

c2
− k2.

Search for product solutions, ψ(x, y) = f(x)g(y):

⇒ 1

f

d2f

dx2
+

1

g

d2g

dy2
= −γ2 ⇒ d2f

dx2
= −µ2f,

d2g

dy2
= −ν2g, γ2 = µ2 + ν2.

General solution:

f(x) = c1 cos(µx) + c2 sin(µx), g(y) = c3 cos(νy) + c4 sin(νy).

E =
{[
− c1µ sin(µx) + c2µ cos(µx)

]
g(y) ĵ

+
[
c3ν sin(νy)− c4ν cos(νy)

]
f(x) î

}
eı(kz−ωt).

Boundary condition, E‖ = 0, at surface of perfect conductor:

c2 = 0, sin(µa) = 0, c4 = 0, sin(νb) = 0,

⇒ ψ(x, y) = Ψ0 cos
(mπx

a

)
cos
(nπy

b

)
.

Discrete modes specified by two integer quantum numbers:

µ =
mπ

a
, ν =

nπ

b
⇒ γ =

√(mπ
a

)2
+
(nπ
b

)2
, m, n = 0, 1, 2, . . . .

TE(m,n) modes are traveling waves in z-direction and standing waves in
both x- and y-directions (with arbitrary amplitude Ψ0):

E(x, t) = Ψ0e
ı(kz−ωt)

[nπ
b

cos
(mπx

a

)
sin
(nπy

b

)
î

−mπ
a

sin
(mπx

a

)
cos
(nπy

b

)
ĵ
]
.
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Magnetic field from Faraday’s law, ∇× E = −∂B
∂t

= ıωB [lex104].

∇× E = −∂Ey
∂z

î +
∂Ex
∂z

ĵ +

(
∂Ey
∂x
− ∂Ex

∂y

)
k̂.

⇒ B(x, t) =
k

ω
Ψ0e

ı(kz−ωt)

[
mπ

a
sin
(mπx

a

)
cos
(nπy

b

)
î

+
nπ

b
cos
(mπx

a

)
sin
(nπy

b

)
ĵ + ı

γ2

k
cos
(mπx

a

)
cos
(nπy

b

)
k̂

]
.

The electric field is transverse in these modes, but the magnetic field has
transverse and longitudinal components. The (longitudinal) z-component is
significant at long wavelengths (small k).

Dispersion: ω2 = c2k2 +
(mπc

a

)2
+
(nπc

b

)2
= c2k2 + ω2

mn.

TE modes propagate only if ω > ωmn =

√(mπc
a

)2
+
(nπc

b

)2
.

Phase velocity: vph
.
=
ω

k
=

c√
1− ω2

mn/ω
2
.

Group velocity [lex172]: vgr
.
=
dω

dk
=

c2

vph
= c

√
1− ω2

mn

ω2
.

TM modes:8

General TM expression: B(x, t) =
[
Bx(x, y) î +By(x, y) ĵ

]
eı(kz−ωt).

Ansatz that satisfies Gauss’s law, ∇ ·B = 0, by construction:

B = ∇×
[
− ψ(x, y)eı(kz−ωt) k̂

]
=

[
∂

∂x
ψ(x, y) ĵ− ∂

∂y
ψ(x, y) î

]
eı(kz−ωt).

Boundary conditions, B⊥ = 0, at surface of perfect conductor:

⇒ ψ(x, y) = Ψ0 sin
(mπx

a

)
sin
(nπy

b

)
.

8The chain of reasoning varies little from that used for TE modes.

10



TM(m,n) modes are traveling wave in z-direction and standing wave in both
x- and y-directions (with arbitrary amplitude Ψ0):

B(x, t) = Ψ0e
ı(kz−ωt)

[
−nπ
b

sin
(mπx

a

)
cos
(nπy

b

)
î

+
mπ

a
cos
(mπx

a

)
sin
(nπy

b

)
ĵ
]
.

Electric field from Ampère’s law, ∇×B =
1

c2
∂E

∂t
= − ıω

c2
E.

∇×B = −∂By

∂z
î +

∂Bx

∂z
ĵ +

(
∂By

∂x
− ∂Bx

∂y

)
k̂.

⇒ E(x, t) =
c2k

ω
Ψ0e

ı(kz−ωt)

[
mπ

a
cos
(mπx

a

)
sin
(nπy

b

)
î

+
nπ

b
sin
(mπx

a

)
cos
(nπy

b

)
ĵ− ıγ

2

k
sin
(mπx

a

)
sin
(nπy

b

)
k̂

]
.

The magnetic field is transverse in these modes, but not the electric field.
The longitudinal component is significant at long wavelengths (small k).

The lowest-frequency TM mode is TM(1,1), whereas the lowest-frequency
TE mode is either TE(1,0) or TE(0,1).

Wave guide with cross section of arbitrary shape:

Perfect conductor with interior surface specified by cross sectional curve C.

The field expressions in terms of a scalar potential ψ(x, y) remain the same.
The boundary conditions stated for ψ(x, y) impose those for the electric and
magnetic fields simultaneously (to be explained separately for the TE and
TM modes in [lex107] and [lex108]).
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TE modes:

Ansatz for electric and magnetic fields [lex107]:

E(x, t) = −∇×
[
ψ(x, y)eı(kz−ωt) k̂

]
= −

[
∇× ψ(x, y) k̂

]
eı(kz−ωt),

B(x, t) =
k

ω

[
−∇ψ(x, y) + ı

γ2

k
ψ(x, y) k̂

]
eı(kz−ωt).

Maxwell’s equations are satisfied [lex104] if ψ(x, y) satisfies the Helmholtz
equation,

∇2ψ = −γ2ψ, γ2 =
ω2

c2
− k2.

All relevant boundary conditions are encoded in the condition [lex107],

n̂ · ∇ψ = 0 for all x ∈ C.

The task has thus been reduced to the solution of an eigenvalue problem with
Neumann boundary conditions and a built-in frequency threshold: ω ≥ cγ.

TM modes:

Ansatz for electric and magnetic fields [lex108]:

B(x, t) = −∇×
[
ψ(x, y)eı(kz−ωt) k̂

]
,

E(x, t) =
c2k

ω

[
∇ψ(x, y)− ıγ

2

k
ψ(x, y) k̂

]
eı(kz−ωt).

Maxwell’s equations are satisfied [lex104] if ψ(x, y) satisfies the Helmholtz
equation,

∇2ψ = −γ2ψ, γ2 =
ω2

c2
− k2.

All relevant boundary conditions are encoded in [lex108]

ψ = 0 for all x ∈ C.

The task has thus been reduced to the solution of an eigenvalue problem with
Dirichlet boundary conditions and a built-in frequency threshold: ω ≥ cγ.
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Conditions for TEM modes:

The conditions for the existence of TEM modes are more restrictive than
those for TE or TM modes in a wave guide with a single conducting surface
of arbitrary cross section.

– A purely transverse magnetic field in TE modes or a purely transverse
electric field in TM modes only exist if γ = 0.

– In consequence, the Helmholtz equation for any TEM mode reduces to
the Laplace equation, ∇2ψ = 0.

– In regions delimited by a single boundary – one cross-sectional loop C
– the trivial solution ψ(x, y) ≡ 0 exists and is unique.

– In order to permit TEM modes, the wave guide must consist of at least
two different conductors insulated from each other.

– The simplest, most symmetric configuration, apart from parallel plates
(analyzed earlier), is a coaxial cable.

TEM mode in coaxial cable:

Two concentric cylindrical surfaces of perfect conductor separated by a region
a < r < b of isotropic dielectric material with permittivity ε.

The use of cylindrical coordinates r, φ, z is a natural first step.

The boundary conditions at the surface of the conducting surfaces dictate
that E‖ = 0 and B⊥ = 0.

Cylindrical symmetry dictates that the radial electric field and the azimuthal
magnetic field are independent of φ and z.

Ansatz for electric and magnetic fields of TEM mode:

E(x, t) = Er(r)e
ı(kz−ωt) r̂, B(x, t) = Bφ(r)eı(kz−ωt) φ̂.
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The functions Er(r) and Bφ(r) and the dispersion ω(k) follow from substi-
tution of the ansatz into Maxwell’s equations [lex109]:

E(x, t) =
C0

r
eı(kz−ωt) r̂, B(x, t) =

C0

vr
eı(kz−ωt) φ̂,

where
ω

k
= v =

1
√
µ0ε

is the (dispersionless) wave velocity. The amplitude of the electric potential
difference between the conductors is

Φ0 = C0 ln(b/a).

The two remaining boundary conditions, for E⊥ and B‖, determine the sur-
face charge density,

σ = εEn =


+εC0

a
eı(kz−ωt) : r = a,

−εC0

b
eı(kz−ωt) : r = b,

and the surface current densities,

K =
1

µ0

n̂×B‖ =


+vεC0

a
eı(kz−ωt) ẑ : r = a,

−vεC0

b
eı(kz−ωt) ẑ : r = b.
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Exercises:

B TE mode in rectangular wave guide [lex104]

B Surface charge and current in rectangular wave guide I [lex105]

B Surface charge and current in rectangular wave guide II [lex106]

B Helmholtz equation for wave guide I: TE modes [lex107]

B Helmholtz equation for wave guide II: TM modes [lex108]

B TEM mode in coaxial cable I: electric and magnetic fields [lex109]

B TEM mode in coaxial cable II: impedance [lex110]
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