
Optics I [lln17]

Optics is the study of light and its interaction with conductors and di-
electrics. The strongest interaction is between electric field (of light) and
electric charges (of electrons in matter).

Electromagnetic wave in dielectric:

Dielectrics have permittivity ε, permeability µ, and conductivity σ = 0.

Constitutive equations: D(x, t) = εE(x, t), H(x, t) = B(x, t)/µ.

Maxwell’s equations in uniform dielectric (with ρf = 0, Jf = 0):

∇ ·D = 0, ∇ ·B = 0, ∇× E = −∂B

∂t
, ∇×H =

∂D

∂t
.

Wave speed in dielectric: v =
1
√
εµ

=
c

n
.

Index of refraction: n =
c

v
=

√
εµ

ε0µ0

(in general, frequency-dependent).

Linearly polarized plane electromagnetic wave:

E(x, t) = E0e
ı(k·x−ωt), B(x, t) = B0e

ı(k·x−ωt).

Transverse nature of wave, E · k = B · k = 0, follows from Gauss’s laws:

∇ · (εE) = εık · E0e
ı(k·x−ωt) = 0, ∇ ·B = ık ·B0e

ı(k·x−ωt) = 0.

Faraday’s law and Ampère’s law establish (i) the right-handed orthogonal
triad between vectors E0,B0,k, and (ii) the ratio between amplitudes E0,B0:

ık× E = ıωB, ık× B

µ
= −ıωεE.

⇒ (i)
E0

E0

× B0

B0

=
k

k
, (ii)

E0

B0

=
ω

k
= v.

Distinction between phase velocity and group velocity:

vphase
.
=
ω

k
, vgroup

.
=
dω

dk
. (1)

Dispersion relation: function ω(k). If ω = ck then vphase = vgroup = c.

1



Poynting vector: S = E×H =
1

µ
E×B.

⇒ S(x, t) =
1

µ
E0 ×B0 cos2(k · x− ωt) =

E2
0

µv

k

k
cos2(k · x− ωt).

Intensity: I =

〈
k

k
· S
〉

=
1

µv
E2

0 〈cos2(k · x− ωt)〉︸ ︷︷ ︸
1/2

=
1

2
εvE2

0 .

Reflection and refraction at plane dielectric interface:

Reflection and refraction are consequences of the change in phase velocity
and the boundary conditions at the interface as established earlier.

Dielectric media have indices of refraction n1 and n2.

Incident, reflected, and refracted plane wave are characterized by rays with
wave vectors, k, k′′, and k′, respectively.

Reflection and refraction take place in plane of incidence, defined by k and
the normal to the interface (here the xy-plane).
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Incident, reflected, and refracted waves fully characterized by electric field:

E(x, t) =

{
E0e

ı(k·x−ωt) + E′′0e
ı(k′′·x−ωt) : x < 0,

E′0e
ı(k′·x−ωt) : x > 0.

Boundary conditions for dielectric interface (from [lln15]):

ε1E1⊥ = ε2E2⊥, B1⊥ = B2⊥,

E1‖ = E2‖, B1‖/µ1 = B2‖/µ2.
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Consequences of symmetry and changing wave speed for angular frequencies
and wave vectors:

[1] : ω = ω′ = ω′′; [2] : k′′ = k,
k′

n2

=
k

n1

; [3] : ky = k′y = k′′y .

When the phase velocity ω/k changes between media, it is the wavelength
λ = 2π/k that changes, not the period T = 2π/ω. The last consequence
follows from translational symmetry along the interface.

Representation of wave vectors satisfying consequences [1] and [2]:

k = n1
ω

c

[
cos θ î + sin θ ĵ

]
,

k′ = n2
ω

c

[
cos θ′ î + sin θ′ ĵ

]
,

k′′ = n1
ω

c

[
− cos θ′′ î + sin θ′′ ĵ

]
.

Implication of consequence [3]: law of reflection and Snell’s law of refraction.

sin θ = sin θ′′, n1 sin θ = n2 sin θ′. (2)

We save the question of how the amplitudes E0, E′0, and E′′0 are related to
each other for later.

Total internal reflection:

The index of refraction n is a measure of optical density.

If n1 > n2, refraction turns into total internal reflection if the angle of inci-
dence exceeds the critical angle,

sin θ︸︷︷︸
→sin θc

=
n2

n1

sin θ′︸ ︷︷ ︸
→1

⇒ sin θc =
n2

n1

.

For θ > θc we can still formally write,

sin2 θ = sin2 θc sin2 θ′ ⇒ sin2 θ′ =
sin2 θ

sin2 θc
> 1.

The refracted wave for θ > θc travels along interface and is exponentially
attenuated in the optically less dense medium. It is an evanescent wave
there and can only be detected in a thin layer close to the interface.

3



v
nr 'tp

k
ht(nl

s

o.

@

i

rrD

I(

x

t*
I

Transformation of the expression for the refracted wave in two steps:

E′(x, t) = E′0 exp
(
ın2

ω

c
x cos θ′ + ın2

ω

c
y sin θ′ − ωt

)
= E′0 exp

(
ın1

ω

c
y sin θ − ωt

)
exp

(
n2
ω

c
ı cos θ′

)
= E′0 exp

(
ın1

ω

c
y sin θ − ωt

)
exp

(
−n2

ω

c
ξx
)

︸ ︷︷ ︸
e−x/δ

,

– In the first step we use: n1 sin θ = n2 sin θ′

– In the second step we use:

ı cos θ′ = ı
√

1− sin2 θ′ = −
√

sin2 θ′ − 1 = −

√
sin2 θ

sin2 θc
− 1

.
= −ξ,

where δ
.
= c/(n2ωξ) is the (θ-dependent) attenuation length.

Normal-incidence reflectivity:

Reflectivity and transmissivity are defined as intensity ratios:

R
.
=
I ′′

I
, T

.
=
I ′

I
.

Normal incidence: θ = θ′ = θ′′ = 0.

Linearly polarized waves with k = k î, k′ = k′ î, k′′ = −k′′ î, k′′ = k.

Electric-field polarizations and amplitudes:

E0 = E0 ĵ, E′0 = E ′0 ĵ, E′′0 = E ′′0 ĵ.

Magnetic-field polarizations and amplitudes:1

H0 =
E0

µ1v1
k̂, H′0 =

E ′0
µ2v2

k̂, H′′0 = − E ′′0
µ1v1

k̂.

1Distinguish between k (wave vector) and k̂ (unit vector in z-direction).
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Implementation of boundary conditions for tangential field components:

E0 + E ′′0 = E ′0,
E0 − E ′′0
µ1v1

=
E ′0
µ2v2

; v1 =
c

n1

, v2 =
c

n2

.

Electric-field phase relations between waves:

E ′0
E0

=
2µ2n1

µ2n1 + µ1n2

,
E ′′0
E0

=
µ2n1 − µ1n2

µ2n1 + µ1n2

.

B E ′0/E0 > 0 is always realized, implying that the incident and refractive
waves are always in phase.

The direction of E0 and E′0 as well as directions of H0 and H′0 are
always the same.

B E ′′0/E0 can be positive or negative, implying that the reflected wave is
in phase with the incident wave if µ2n1 > µ1n2 and has opposite phase
if µ2n1 < µ1n2.

In phase means that E0 and E′′0 have the same direction. Opposite
phase means that H0 and H′′0 have the same direction.

In either case, E0 ×H0 and E′′0 ×H′′0 have opposite direction.

Reflectivity and transmittivity:

R =
E ′′20
E2

0

=

(
µ2n1 − µ1n2

µ2n1 + µ1n2

)2

, T =
ε2v2
ε1v1

E ′20
E2

0

=
µ1n2

µ2n1

E ′20
E2

0

=
4µ1µ2n1n2

(µ2n1 + µ1n2)2
.

Energy conservation is encoded in the relation, R + T = 1.
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Nonreflecting surface via dielectric coating:

Surface in yz-plane. Dielectric with index n2 at x > a. Surface coating with
index n1 at 0 < x < a. Air at x < 0.
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Incident (linearly polarized) plane wave from left (air) is refracted and re-
flected both at the surface (x = 0) and at the interface (x = a).

Simplified notation with k = ω/c, k1 = n1k, k2 = n2k and k · x = kx,
k′′ · x = −kx, k′1 · x = k1x, k′′1 · x = −k1x, k′2 · x = k2x:

E(x, t) = ĵ


E0e

ı(kx−ωt) + E ′′0e
−ı(kx+ωt) : x ≤ 0,

E ′1e
ı(k1x−ωt) + E ′′1e

−ı(k1x+ωt) : 0 ≤ x ≤ a,
E ′2e

ı(k2x−ωt) : x ≥ a,

cB(x, t) = k̂


E0e

ı(kx−ωt) − E ′′0e−ı(kx+ωt) : x ≤ 0,
n1E

′
1e
ı(k1x−ωt) − n1E

′′
1e
−ı(k1x+ωt) : 0 ≤ x ≤ a,

n2E
′
2e
ı(k2x−ωt) : x ≥ a.

Boundary conditions for tangential fields at x = 0:2

E0 + E ′′0 = E ′1 + E ′′1 , E0 − E ′′0 = n1(E
′
1 − E ′′1 ).

Boundary conditions for tangential fields at x = a:

E ′1e
ık1a + E ′′1e

−ık1a = E ′2e
ık2a, n1

(
E ′1e

ık1a − E ′′1e−ık1a
)

= n2E
′
2e
ık2a.

The four boundary conditions determine the values of E ′′0 , E
′
1, E

′′
1 , E

′
2 for given

value of E0 of the incident wave, indices of refraction n1, n2, and thickness a
of the coating.

Condition of zero reflectivity at surface (x = 0): E ′′0 = 0.

2We set µ1 = µ2 = µ0 and use H0 = E0/µ0c, H
′′
0 = −E′′

0 /µ0c, H
′
1 = n1E

′
1/µ0c,

H ′′
1 = −n1E′

1/µ0c, H
′
2 = n2E

′
2/µ0c. We also assume that 0 < n1 < n2.
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Use boundary conditions at x = 0 with E ′′0 = 0 [lex97]:

⇒ E ′1 =
E0

2

(
1 +

1

n1

)
, E ′′1 =

E0

2

(
1− 1

n1

)
.

Use boundary conditions at x = a [lex97]:

⇒ n2

n1

=
ı n1 sin(k1a) + cos(k1a)

n1 cos(k1a) + ı sin(k1a)
.

Physically relevant solution [lex97]: cos(k1a) = 0 ⇒ a =
λ1
4
, n1 =

√
n2.

Plane-wave incidence at any angle:

Distinction between two kinds of linear polarizations:

– TE polarization: electric field is perpendicular to plane of incidence.

– TM polarization: magnetic field is perpendicular to plane of incidence.

Reflection and refraction of TE plane wave:
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Electric field and magnetic field:

E = E0e
ı(k·x−ωt) k̂, H =

E0

µ1v1
eı(k·x−ωt)

[
sin θ î− cos θ ĵ

]
,

E′ = E ′0e
ı(k′·x−ωt) k̂, H′ =

E ′0
µ2v2

eı(k
′·x−ωt)

[
sin θ′ î− cos θ′ ĵ

]
,

E′′ = E ′′0e
ı(k′′·x−ωt) k̂, H′′ =

E ′′0
µ1v1

eı(k
′′·x−ωt)

[
sin θ î + cos θ ĵ

]
.
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Boundary conditions (use v1 = c/n1, v2 = c/n2):

D1⊥ = D2⊥: guaranteed by polarization (both vanish).

E1‖ = E2‖: E0 + E ′′0 = E ′0.

B1⊥ = B2⊥: equivalent to E1‖ = E2‖ by Snell’s law.3

H1‖ = H2‖:
n1

µ1

(E0 − E ′′0 ) cos θ =
n2

µ2

E ′0 cos θ′.

Resulting amplitude ratios [lex98]:

E ′0
E0

=
2µ2n1 cos θ

µ2n1 cos θ + µ1n2 cos θ′
,

E ′′0
E0

=
µ2n1 cos θ − µ1n2 cos θ′

µ2n1 cos θ + µ1n2 cos θ′
.

Fresnel’s equation: assume µ1 = µ2 = µ0 and use Snell’s law [lex98].

⇒ E ′′0
E0

=
sin(θ′ − θ)
sin(θ′ + θ)

.

Note: E ′′0/E0 < 0 indicates a 180◦ phase change of the reflected wave.4

Reflection and refraction of TM plane wave:
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Magnetic field and electric field:

H =
E0

µ1v1
eı(k·x−ωt) k̂, E = E0e

ı(k·x−ωt)
[
− sin θ î + cos θ ĵ

]
,

H′ =
E ′0
µ2v2

eı(k
′·x−ωt) k̂, E′ = E ′0e

ı(k′·x−ωt)
[
− sin θ′ î + cos θ′ ĵ

]
,

H′′ =
E ′′0
µ1v1

eı(k
′′·x−ωt) k̂, E′′ = E ′′0e

ı(k′′·x−ωt)
[
− sin θ î− cos θ ĵ

]
.

3(E0 + E′′
0 )n1 sin θ = E′

0n2 sin θ
′, n1 sin θ = n2 sin θ

′.
4The graph is for E′′

0 /E0 > 0.
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Boundary conditions (use ε1 = n1/cv1µ1, ε2 = n2/cv2µ2):

B1⊥ = B2⊥: guaranteed by polarization (both vanish).

H1‖ = H2‖:
n1

µ1

(E0 + E ′′0 ) =
n2

µ2

E ′0.

D1⊥ = D2⊥: equivalent to H1‖ = H2‖ by Snell’s law.5

E1‖ = E2‖: (E0 − E ′′0 ) cos θ = E ′0 cos θ′.

Resulting amplitude ratios [lex99]:

E ′0
E0

=
2µ2n1 cos θ

µ1n2 cos θ + µ2n1 cos θ′
,

E ′′0
E0

=
µ1n2 cos θ − µ2n1 cos θ′

µ1n2 cos θ + µ2n1 cos θ′
.

Fresnel’s equation: assume µ1 = µ2 = µ0 and use Snell’s law [lex99].

⇒ E ′′0
E0

=
tan(θ − θ′)
tan(θ + θ′)

.

Note the different sign conventions for TE and TM waves: here E ′′0/E0 > 0
indicates 180◦ phase change of reflected wave.6

Brewster angle:

The TM wave has zero reflectivity for a particular angle of the incident wave.

Brewster angle: θB = arctan

(
n2

n1

)
(assuming µ1 = µ2 = µ0).

– Condition of zero reflectivity:
E ′′0
E0

= 0 ⇒ tan(θ + θ′) =∞

⇒ θ + θ′ =
π

2
⇒ θ′ =

π

2
− θ.

– Snell’s law: n1 sin θ = n2 sin θ′,

– Brewster angle: n1 sin θB = n2 sin θ′B = n2 sin
(π

2
− θB

)
= n2 cos θB,

⇒ tan θB =
n2

n1

.

Consequence: unpolarized incident light reflected from a dielectric at the
Brewster angle θB becomes fully polarized.

5−(E0 + E′′
0 )ε1 sin θ = −E′

0ε2 sin θ
′, n1 sin θ = n2 sin θ

′.
6The graph is for the case E′′

0 /E0 < 0.
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Energy conservation:

Reflectivity and transmittivity have earlier been defined as intensity ratios:7

R
.
=
I ′′

I
=
E ′′20
E2

0

, T
.
=
I ′

I
=
ε2v2
ε1v1

E ′20
E2

0

=
µ1n2

µ2n1

E ′20
E2

0

.

For normal incidence, we found that R+T = 1. The intensity of the incident
wave is split into the intensities of the reflected and transmitted waves. Total
intensity is conserved.

For incidence at an angle, energy conservation does no longer imply conser-
vation of total intensity.

Intensity is power per unit cross sectional area of the wave. Energy conser-
vation applies to power per area of the interface:

I cos θ = I ′′ cos θ + I ′ cos θ′ ⇒ R + T
cos θ′

cos θ
= 1.

Electromagnetic waves in a conductor:

Here the dominant interaction is with (free) conduction electrons.

Density of free current: Jf (x, t) = σE(x, t) (Ohm’s law in operation).

Linear field relations: D = εE, B = µH.

Maxwell’s equations in a metal:

∇ · E = 0, ∇ ·B = 0, ∇× E = −∂B

∂t
, ∇×B = µσE + µε

∂E

∂t
.

The first term in Ampère’s law involves energy dissipation.

Separating the fields by introducing second derivatives and identities of vector
analysis, yields identical wave equations for the electric and magnetic fields
amended by an attenuation term [lex100]:

∇2E = µσ
∂E

∂t
+ µε

∂2E

∂t2
, ∇2B = µσ

∂B

∂t
+ µε

∂2B

∂t2
.

Ansatz for a transverse plane wave traveling in x-direction:

E(x, t) = E0e
ı(κx−ωt), E0 ⊥ î.

7In the last equality we have used v1 = c/n1 = c/
√
ε1µ1 and v2 = c/n2 = c/

√
ε2µ2.
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Substitution of the ansatz into the amended wave equation requires that the
parameters κ and ω satisfy the relation [lex100],

κ2 = µεω2 + ıµσω,

which is satisfied by the complex wave number, κ = κ1 + ıκ2,

κ1 = ω

√
εµ

2

[√
1 +

( σ
εω

)2
+ 1

]1/2
, κ2 = ω

√
εµ

2

[√
1 +

( σ
εω

)2
− 1

]1/2
.

Exponentially attenuated wave: E(x, t) = E0e
−κ2xeı(κ1x−ωt).

Note that the conductor is a dispersive medium: κ1 = κ1(ω).

Criterion for good conductor: σ(ω)� εω ⇒ κ1 ' κ2 '
√
µσω

2
.

Characteristic penetration depth (skin depth): δ
.
=

1

κ2
=

√
2

µσω
.

The complex nature of the wave number κ causes a phase shift of the magnetic
field B relative to the electric field E in the wave, which is most directly
demonstrated by invoking Faraday’s law:

ıωB = ıκ
κ1

κ1
× E ⇒ ωB =

(
1 + ı

κ2
κ1

)
κ1 × E.

In a good conductor, where κ1 ' κ2, the phase shift is ∆φ = π/4.

Reflection from conductor:

Shiny metal surfaces are highly reflective. The reflected wave is largely gen-
erated by the motion of free electrons near the metal surface.

Adaptation of the result for normal-incidence reflection at the interface be-
tween dielectrics, using µ1 = µ2 = µ0, n1 = 1, n2 = c/v2 = cκ/ω [lex101]:

E ′′0
E0

=
µ2n1 − µ1n2

µ2n1 + µ1n2

 
1− n2

1 + n2

=
ω − cκ
ω + cκ

.

Reflectivity: R =

∣∣∣∣E ′′0E0

∣∣∣∣2 =
(ω − cκ1)2 + (cκ2)

2

(ω + cκ1)2 + (cκ2)2
.

Criteria for good conductor [lex101]: κ1 ' κ2 '
√
µσω

2
, cκ1 � ω.

⇒ R ' 1−
√

8ωε0
σ

.
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Dispersion:

The material parameters ε, µ, σ, which govern optics, vary with (angular)
frequency ω, a phenomenon named dispersion.

Dispersion arises when the response of the optical medium to the electric or
magnetic field is not instantaneous.

A classical model which illustrates this effect is the driven harmonic oscillator,

mẍ = −Kx− γẋ + F(t),

representing an electron (mass m, charge −e) subject to a restoring force,
−Kx, a dissipative force, −γẋ, and a driving force, F(t) = −eE(t).

Monochromatic (single-frequency) driving field: E(t) = E0e
−ıωt.

Displacement of electron: x(t) = x0e
−ıωt, x0 =

−eE0

K −mω2 − ıγω
.

The response thus modeled is frequency-dependent in both amplitude and
phase, which is characteristic of dispersion [lex102]. The phase-shift is in-
dicative of energy dissipation.
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Dispersion in a dielectric:

Atomic electric dipole moment: p(t) = −ex(t) = αE(t).

Atomic polarizability: α =
e2

K −mω2 − ıωγ
(using previous expressions).

Density of atoms: ν.

Electric polarization: P = νp = ναE.

Displacement field: D = ε0E + P = εE.

Permittivity of dielectric material: ε(ω) = ε0 + να(ω).

Dispersion relation: κ(ω) = ω
√
ε(ω)µ0

.
= κ1(ω) + ıκ2(ω).
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Electromagnetic wave penetrating dielectric material:

E(x, t) = E0e
−κ2xeı(κ1x−ωt),

– absorption length: d(ω) = 1/2κ2,

– index of refraction: n(ω) = cκ1/ω,

Results for weak polarizability, να� ε0 [lex103]:

n =
cκ1
ω

= 1 +
νe2

2ε0mω2
0

ω2
0(ω2

0 − ω2)

(ω2
0 − ω2)2 + (ωγ/m)2

, ω0
.
=

√
K

m

d−1 = 2κ2 =
νe2

ε0mc

ω2γ/m

(ω2
0 − ω2)2 + (ωγ/m)2

.

Absorption peaks at resonance, ω ' ω0. For ω < ω0, n(ω) increases with ω,
as evidenced in prisms and rainbows.
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Dispersion in a plasma:

Plasma: gas of unbound electrons and positive ions, conducting material.

Use classical model from earlier, but with zero restoring force: K = 0.

Displacement of electron: x(t) =
e

mω2 + ıγω
E(t), E(t) = E0e

−ıωt.

Velocity of electron: v(t) =
dx

dt
=

−ıeω
mω2 + ıγω

E(t).

Density of electrons: νe.

Current density: J = −eνev = σ(ω)E.

Conductivity: ⇒ σ(ω) =
ıωe2νe

mω2 + ıγω

γ→0
 

ıe2νe
mω

.

In the dilute-plasma limit, γ → 0. The conductivity becomes purely imagi-
nary. Collisions are rare. Attenuation is negligibly small.
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Power dissipation per volume:
P

V
= J · E.

The imaginary σ(ω) in the dilute-plasma limit introduces a phase-shift of
ı = eıπ/2 between J and E, implying a zero time average of J · E.

Consequence: no power transfer between wave and plasma on average.

Dispersion relation of dilute-plasma wave from κ2 = µεω2 + ıµσω:

κ2 = µ0ε0ω
2 − µ0e

2νe
m

=
ω2 − ω2

p

c2
,

Plasma frequency: ωp =

√
e2νe
meε0

.

– Case ω > ωp:
κ is real; wave propagates without attenuation, dispersion is present.

– Case ω < ωp:
κ is imaginary; wave does not propagate through plasma; it decays
exponentially on the length scale d = c/

√
ω2
p − ω2, no dissipation takes

place; wave is reflected from plasma.

Realization of case ω < ωp: AM radio waves reflected from ionosphere.

Exercises:

B Anti-reflection coating [lex97]

B Fresnel equation for TE wave [lex98]

B Fresnel equation for TM wave [lex99]

B Electromagnetic wave in a conductor [lex100]

B Reflection of electromagnetic wave from a conductor [lex101]

B Driven harmonic oscillator: steady-state solution [lex102]

B Dispersion and absorption in a dielectric [lex103]
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