
Electrodynamics I [lln14]

In electrostatics, the sources of electric field are free or bound electric charges
at rest. In magnetostatics, the sources of magnetic field are time-independent
configurations of conduction currents and bound currents.

Electrodynamics analyzes situations with time-dependent electric fields E(x, t)
and magnetic fields B(x, t).

An additional source of electric field is associated with magnetic induction
(discussed here). An additional source of magnetic field is associated with
displacement currents (discussed later).[lln15]

In a nutshell: time-varying magnetic fields cause electric fields and vice versa.

Faraday’s law of electromagnetic induction:

Consider the perimeter loop C of an open surface S shown. It can be a
physical loop (e.g. a wire) or a loop of your imagination.

– The loop C is a closed curve in space with a sense of traversal (indicated
by arrow). The loop must not intersect itself, but it can be twisted.

– The open surface S is surrounded by the perimeter loop C. The surface
of a given loop is not unique, in general. A planar loop has a unique
flat surface.
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– Line element dl: vector with SI unit [m] representing an infinitesimal
segment of the perimeter loop C in the direction of traversal.

– Area element da: vector with SI units [m2]. The magnitude of da is
the area of a surface element on S. The direction of da is normal to S
the surface in the direction consistent with the traversal of C.1

1The consistency is dictated by the right-hand rule: Curve the fingers of your right hand
in the direction of C at any location of the loop. Then your thumb marks the side of S
to which da points.
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– Magnetic flux: ΦB =

∫
S

B · da [Tm2 = Wb] (Weber).

– Time-dependent electric fields are not, in general, irrotational.

– Electromotive force (EMF): E =

∮
C

E · dl [V].

– Faraday’s law (integral version):∮
C

E · dl = E = −dΦB

dt
= −

∫
S

∂B

∂t
· da [V = Wb/s].

– Stokes’ theorem:

∮
C

E · dl =

∫
S

∇× E · da.[gmd1-B]

– Faraday’s law (differential version): ∇× E = −∂B

∂t
.

General comments:

– Calculating a flux quantity through an open surface always involves a
choice of direction:

B Electric current I is the flux of the current density J, typically
through an (open) cross sectional surface. J is a vector field with
a definite direction. I (not a vector) assumes a direction associated
with the area vector used in the construction of flux.

B The flux ΦB of a magnetic field B through a loop assumes a di-
rection in an analogous way.

B In both instances, the direction of the flux quantity is tied to the
direction of the chosen area vector via the right-hand rule. The
direction of the field is determined by the physical situation.

– Switching the sense of traversal on C implies switching the direction of
the area vector on S. The integrity of Faraday’s law is not affected by
the choice made.

Lenz’s rule (statement of negative feedback): The magnetic field generated
by induced currents opposes the change in magnetic flux which causes it.

Note that Faraday’s law can stand on its own. Lenz’s rule is merely a con-
venient tool for the determination of the direction of induced currents.
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Motional EMF:

A conducting rod moves laterally in uniform magnetic field.
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– Rod of length l oriented in y-direction, moving in x-direction.

– Velocity: v = v î.

– Magnetic field: B = B k̂.

– Magnetic force on mobile charge carriers: FB = q v ×B = −qvB ĵ.

– Magnetic force causes vertical drift of mobile charge carriers.

– Charge separation causes buildup of electric field: E = E ĵ.

– Electric force FE = qE counteracts magnetic force FB.

– Drift ceases when forces are in balance: FE = −FB.

– Electric field built up: E = −v ×B = vB ĵ.

– Motional EMF for this case: E = −E · l = vBl.

Motional EMF for an open wire is akin to an electrostatic potential: [lex81]

[lex137][lex138]

E .
= −

∫ x2

x1

E · dl =

∫ x2

x1

dl · v ×B.

Electric and magnetic forces are balanced for mobile charge carriers in each
segment dl of the wire.

The principle of relativity in the context of motional EMF will be a topic in
a later module.[lln25]
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Consistency of motional EMF with Faraday’s law:

Conducting loop C (wire) moving in static magnetic field of arbitrary shape.

– Motional EMF: E =

∮
C

dl · v ×B =

∮
C

B · dl× v.

– Displacement of loop: dx = vdt.

– Loops Ct at time t and Ct+dt at t+ dt define a looping ribbon.

– Area element on ribbon: da = dl× dx.

– The loop direction dl is chosen such that da points outward.

– Magnetic flux through ribbon: dΦ
(rib)
B =

∮
C

B · dl× dx︸ ︷︷ ︸
da

= Edt.

– Construct closed surface Sc from ribbon and two open surfaces St and
St+dt inside perimeters Ct and Ct+dt, respectively.

– Use Gauss’s law for the magnetic field:

⇒
∮
Sc

da ·B = Edt+

∫
St+dt

da ·B−
∫
St

da ·B = 0.

– In the next step, we divide by dt and take the limit dt→ 0.

– Of the flux through a closed surface remains the difference of flux
through two open surfaces.

– Faraday’s law recovered: E = − d

dt

∫
St

da ·B = −dΦB

dt
.
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Faraday disk generator:

Conducting disk spinning in plane perpendicular to uniform magnetic field.
Stationary wire connects axle with rim by sliding contacts.

Cylindrical symmetry is broken by sliding contact. It is (effectively) restored
when the rim of the disk is made of a layer with significantly higher conduc-
tivity. Simplifying feature: current density inside disk is radial.

– Magnetic field: B = B ẑ (uniform).

– Radius of the disk: a.

– Angular velocity: ω = ω ẑ.

– Motional EMF: E =

∫ a

0

dr rωB =
1

2
ωBa2.

– Disk with sliding contacts is a resistor (with resistance R).

– Current between sliding contacts: I =
E
R

=
ωBa2

2R
.

– Current in disk is radially outward: dE = B · dr× v > 0.

– Current density inside disk: K = K(r) r̂ (per unit length) [A/m].

– Radial current inside disk: I = 2πrK(r) (independent of r).

– Magnetic attenuation force acting on ring of radius r and width dr:

dF = (2πrdr)K×B = −2πrdrK(r)B φ̂ (tangential to circle).

– Attenuating torque acting on disk: [lex74][lex75]

N =

∫
disk

r× dF =

∫ a

0

dr (2πr)r× (K×B),

r× (K×B) = K (r ·B)︸ ︷︷ ︸
0

−B(r ·K) = −rK(r) B.

⇒ N = −B

∫ a

0

dr(2πr)rK(r) = −BI

∫ a

0

dr r = −1

2
IBa2 ẑ.
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Eddy currents and magnetic attenuation:

Objects made of conducting materials experience eddy currents when moved
into or out of regions of magnetic fields or, more generally, through a region
of inhomogeneous magnetic field.

Eddy currents inside objects that are extended in more than one dimension
are, in general, of complex shape and hard to quantify. A quantitative anal-
ysis is much simplified if the object is effectively one-dimensional, e.g. a loop
of wire or a network of wires. [lex76][lex202]

Magnetic braking is a means for slowing down moving objects as an alterna-
tive to kinetic friction:

– It converts kinetic energy into electromagnetic energy by induction.

– It dissipates electromagnetic energy into heat via eddy currents.

– The eddy currents thus produce a drag force without sliding contact.

– The wear and tear associated with frictional forces is avoided.

When a narrow source of magnetic field on a train moves along the track,
the induced eddy current in the track generates a magnetic field that opposes
the generating magnetic field in direction.

The direction of the induced magnetic field is consistent with Lenz’s rule.

The induced magnetic field also provides a repulsive force between train and
track (in the manner of the repulsive force between magnetic dipoles facing
each other). This principle is exploited in magnetic levitation of high-speed
trains.
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Alternating-current generator:

Alternating-current (ac) circuits are driven by power sources that deliver an
alternating EMF (via electrical outlets).

Principle of ac power generation: a mechanically powered turbine forces a
conducting loop to rotate in a static magnetic field.

The steady rotation of a loop with angular velocity ω changes the angle
between the area vector a and the magnetic field B continually.

In consequence, the magnetic flux ΦB through the loop changes periodically.
The rate of that change is also periodic.

– Area of conducting loop: a.

– Number of turns: N .

– Area vector: a = an̂.

– Magnetic field: B.

– Angular velocity of rotation: ω.

– Angle between vectors a and B: θ = ωt.

– Magnetic flux: ΦB = Na ·B = NaB cos(ωt).

– Angular frequency of magnetic flux and induced EMF: ω.

– Induced EMF: E = −dΦB

dt
= NaBω︸ ︷︷ ︸

Emax

sin(ωt).

The EMF amplitude, Emax, can be made higher by increasing any one or
several of four factors
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Cyclotron:

One of the earliest particle accelerator designs.

– Low-energy protons (mass m, charge e) are injected at S.

– Path of proton is bent by magnetic field B.

– Alternating EMF between Dee1 and Dee2: E(t) = Emax sin(ωt).

– Adjustable angular frequency: ω.

– Cyclotron period: T =
2πm

eB
.

– One-time synchronization:
2π

ω
= T (no adjustments necessary).

– Energy gain per half cycle of protons: ∆K ' eEmax.

– Path spirals out as velocity of proton increases.

– Radius grows linearly with velocity: r =
mv

eB
.

– Key attribute: period T is independent of v or r.

– High-energy protons exit at perimeter of B-field region.

This design only works for non-relativistic speeds: v � c. For particles with
relativistic speeds, v . c, the period T depends on v.

The angular frequency ω of the EMF E(t) must be adjusted as the particles
pick up kinetic energy. This more advanced design is named synchrotron.
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Betatron:

The betatron, an electron accelerator, has a design in which the magnetic
field plays a dual role: (i) it keeps the electrons on a circular path by providing
the centripetal force; (ii) it accelerates the electrons via induced EMF.

– Toroidal vacuum chamber of radius r0 with electrons circling in a mag-
netic field B(r, t) directed ↑ in the gap of an electromagnet.

– Condition for keeping the orbital radius constant when the particles
pick up momentum:

r0 =
mv

eB
=

p(t)

eB(r0, t)
, ⇒ p(t) = er0B(r0, t) ⇒ dp

dt
= er0

d

dt
B(r0, t).

– Average magnetic field inside orbit: B̄(t) =
1

πr20

∫ r0

0

dr(2πr)B(r, t).

– Magnetic flux inside path of electrons: ΦB(t) = πr20B̄(t).

– Magnetic induction at radius r0: E = 2πr0E =
dΦB

dt
= πr20

dB̄(t)

dt
.

– Induced electric field (tangential to orbit): E =
r0
2

dB̄(t)

dt
.

– Rate of momentum gain of electrons:
dp

dt
= eE =

er0
2

dB̄(t)

dt
.

– Keeping the orbital radius constant in the face of a gradual momen-
tum gain requires that local magnetic field at radius r0 increases syn-
chronously with the average magnetic field:

B(r0, t) =
1

2
B̄(t).
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Inductance:

The phenomenon of magnetic induction as governed by Faraday’s law, man-
ifests itself in a circuit device named inductor.

The solenoid is the prototypical inductor. A long wire is tightly wound into
a cylinder, Each turn of wire is, effectively, a loop.

A current sent through the wire generates a magnetic field around it. This
produces a magnetic flux through each turn. A time-dependent current
causes a time-dependent magnetic flux, which induces an EMF.

The relevant device property is the inductance L,

L
.
=
NΦB

I
[Wb/A] = [H] (Henry),

where ΦB is the magnetic flux through each of the N turns of wire.

Inductance of a solenoid:

– A: cross-sectional area

– `: length

– n: number of turns per unit length

– N = n`: total number of turns

– B = µ0nI: magnetic field inside solenoid [lex65]

– ΦB = BA: magnetic flux through each turn

– Inductance of solenoid: L
.
=
NΦB

I
= µ0n
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A solenoid bent into a torus is named toroid. Calculating the inductance of
a toroid starts from the same definition and arrives at a different result. [lex77]
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Self-induction:

A time-dependent current I(t) flowing through an inductor with inductance
L induces an EMF E(t) in the same device:

– Faraday’s law: E = − d

dt
(NΦB).

– Inductance: L =
NΦB

I
.

– Equivalent voltage: V
.
= Φb − Φa = E .

– Self-induced EMF: E = −LdI
dt

.

L
dI

dr

q@u
I(tt

Lenz’s negative-feedback rule in action: The induced EMF acts such as to
oppose the change in current that causes it.

Inductors make electric currents sluggish, which is illustrated by a mechanical
analogy. Just as mass is a measure of mechanical inertia, inductance is a
measure of electromagnetic inertia.

t

m
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ε L
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t
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Mechanical system: A block of mass m = 2kg is accelerated from rest by a
constant force F = 6N on a frictionless surface.

– Newton’s second law: F −mdv

dt
= 0.

– Rate of velocity increase:
dv

dt
=
F

m
= 3m/s2.

Electromagnetic system: An EMF source delivering voltage E = 6V is con-
nected to a circuit with an inductor of inductance L = 2H, building up a
current I from zero initial value.

– Loop rule: E − LdI
dt

= 0.

– Rate of current increase:
dI

dt
=
E
L

= 3A/s.
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Energy stored in inductor:

Establishing a current in the inductor requires work. The work done is equal
to the potential energy stored in the device.

– Current through inductor: I (increasing from zero).

– Voltage induced across inductor: |E| = L
dI

dt
.

– Power absorbed by inductor: P = |E|I.

– Increment of potential energy: dU = Pdt = LIdI.

– Energy stored in inductor: U = L

∫ I

0

IdI =
1

2
LI2.

– Inductance of solenoid: L = µ0n
2A`.

– Magnetic field inside solenoid: B = µ0nI.

– Energy stored in solenoid : U =
1

2µ0

B2(A`).

– Volume of solenoid interior: A`.

– Energy density of magnetic field: uB =
U

A`
=

1

2µ0

B2.

General energy-density expression of electric and magnetic fields in vacuum:

u = uE + uB =
ε0
2
E2 +

1

2µ0

B2 [J/m3].

Mutual induction:

Consider a configuration of unconnected loops of wire, C1, C2, . . ., with cur-
rents I1, I2, . . . flowing through them, all in the same region of space.
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Each loop generates a magnetic field everywhere in that region. The field
strength is proportional to the current in the loop.
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The magnetic flux Φ
(i)
B through any particular loop Ci thus depends linearly

on the current Ii in the same loop and the currents Ij in all other loops:

Φ
(i)
B = LiIi +

∑
j 6=i

MijIj : i = 1, 2, . . .

– Magnetic flux through loop Ci caused by current Ij named Φ
(ij)
B .

– Self-inductance: Li
.
=

Φ
(ii)
B

Ii
.

– Mutual inductance: Mij
.
=

Φ
(ij)
B

Ij
: j 6= i.

– Induced EMF: Ei = −Li
dIi
dt
−
∑
j 6=i

Mij
dIj
dt

.

Mutual-inductance tensor is symmetric: Mij = Mji.

– Magnetic field generated by current Ij anywhere: Bj = ∇×Aj.

– Loop Ci surrounds surface Si.

– Magnetic flux through Si caused by Ij: Φ
(ij)
B =

∫
Si

dai ·Bj = MijIj.

– Stokes’s theorem:

∫
Si

dai ·Bj(xi) =

∮
Ci

dli ·Aj(xi).

– Mutual inductance: Mij =
1

Ij

∮
Ci

dli ·Aj(xi).

– Vector potential of current Ij: Aj(xi) =
µ0

4π

∮
Cj

Ijdlj
|xi − xj|

.

– Neumann equation: Mij =
µ0

4π

∮
Ci

∮
Cj

dli · dlj
|xi − xj|

.

– Note symmetry with respect to permutations of indices.

– Convention: directions of loop integration can be chosen such that all
mutual inductances Mij come out positive. [lex86]
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Magnetic field energy density:

Establish a general expression for the energy content of a magnetic field in a
region of space. We begin with a loop of wire carrying a current I and then
generalize to a region of free-current density J.
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– Loop C surrounds open surface S.

– Self-inductance of loop: L.

– Energy stored with current I running: U =
1

2
LI2.

– Magnetic flux through surface S: ΦB =

∫
S

da ·B = LI.

– Vector potential A and magnetic B-field: B = ∇×A.

– Stokes’ theorem:

∫
S

da ·B =

∫
S

da · ∇ ×A =

∮
C

dl ·A.

– Energy expression transformed: U =
1

2
I(LI) =

1

2
I

∮
C

dl ·A.

– Generalization to region with current density: Idl = Jfd
3x.

– Energy expression transformed: U =
1

2

∫
d3xJf(x) ·A(x).

– Ampère’s law for H-field: ∇×H = Jf .[lln13]

– Gauss’s theorem implies:2
∫
d3x∇ · [H(x)×A(x)] = 0.

– Identity: (∇×H)︸ ︷︷ ︸
Jf

·A = ∇ · (H×A)︸ ︷︷ ︸
→0

+H · (∇×A)︸ ︷︷ ︸
B

.[gmd1-A]

– Energy expression transformed: U =
1

2

∫
d3xH(x) ·B(x).

– Magnetic-field energy density: u(x) =
1

2
H(x) ·B(x).

2If the current density extends over a finite region, then H→ 0 at |x| → ∞.
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RL circuits:

One-loop circuit with battery, resistor, and inductor.

Specifications: EMF E , resistance R, inductance L.

S

ε

a

b

I(t)

R

L

Time-dependent quantities:

– current through loop: I(t),

– rate of change of current:
dI

dt
,

– voltage across resistor: VR(t) = RI(t),

– voltage across inductor: VL(t) = L
dI

dt
.

(i) Current buildup (battery connected):

– Loop rule: E − I(t)R− L dI
dt

= 0.

– ODE solved by separation of variables:

dI

dt
=
E/R− I
L/R

⇒
∫ I

0

dI

E/R− I
=

∫ t

0

dt

L/R
⇒ −ln

(
E/R− I
E/R

)
=

t

L/R
.

– Current: I(t) =
E
R

[
1− e−Rt/L

]
.

– Rate of current change:
dI

dt
=
E
L
e−Rt/L > 0.

I dr/d&
t
R

-;*-t****It.ta|}

c*
L

tt

– Rates of energy transfer: I(t)E − I2(t)R− LI(t)
dI

dt
= 0,

IE > 0: rate at which battery delivers energy,

IVR = I2R > 0: rate at which resistor dissipates energy,

IVL = LI
dI

dt
> 0: rate at which inductor stores energy.
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– Buildup characteristics:

E
L

=
dI

dt

∣∣∣
t=0

: initial rate at which current increases,

E
R

= lim
t→∞

I(t): final (steady) current,

L

R
: time it takes to build up ∼63% of the current.

(ii) Current shutdown (battery disconnected):

– Loop rule: I(t)R + L
dI

dt
= 0.

– ODE solved by separation of variables:

dI

dt
= −R

L
I ⇒

∫ I

E/R

dI

I
= −R

L

∫ t

0

dt ⇒ ln

(
I

E/R

)
= −R

L
t.

– Current: I(t) =
E
R
e−Rt/L.

– Rate of current change:
dI

dt
= −E

L
e−Rt/L < 0.

T - d31d*
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– Rates of energy transfer: I2(t)R + LI(t)
dI

dt
= 0,

IVR = I2R > 0: rate at which resistor dissipates energy,

IVL = LI
dI

dt
< 0: rate at which inductor releases energy.

– Shutdown characteristics:

E
L

= −dI
dt

∣∣∣
t=0

: initial rate at which current decreases,

E
R

= I(0): total current to be shut down,

L

R
: time it takes to shut down ∼63% of the current.
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– Energy stored on inductor initially: U =
1

2
L

(
E
R

)2

.

– The energy dissipated in the resistor is equal to the energy released by
the inductor:∫ ∞

0

dt I2(t)R =
E2

R

∫ ∞
0

dt e−2Rt/L =
1

2
L

(
E
R

)2

.

Key points to remember in the analysis of RL circuits:

– The voltage across an inductor with a steady current is zero. The
inductor with a steady current is an invisible device.

– The current through an inductor can only change gradually. Any
abrupt change would require a source of infinite voltage.

Electromagnetic oscillator (LC circuit):

One-loop circuit with capacitor and inductor.

Specifications: capacitance C, inductance L.

– loop rule:
Q

C
+ L

dI

dt
= 0, I =

dQ

dt

– equation of motion:
d2Q

dt2
= − 1

LC
Q

– charge on capacitor: Q(t) = Qmax cos(ωt)

– current through inductor: I(t) = −ωQmax sin(ωt)

– angular frequency: ω =
1√
LC

– magnetic energy: UB =
1

2
LI2 (stored on inductor)

– electric energy: UE =
Q2

2C
(stored on capacitor)

– total energy: E = UB + UE = const.
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C L

Electromagnetic oscillations:

charge: Q(t) = A cos(ωt),

current: I(t) = −Aω sin(ωt),

period: τ =
2π

ω
, ω =

1√
LC

.

m

x

k

Mechanical oscillations:

position: x(t) = A cos(ωt),

velocity: v(t) = −Aω sin(ωt),

period: τ =
2π

ω
, ω =

√
k

m
.

0.25 0.5 0.75 1.
t�Τ

+A

-A

Electromagnetic oscillations:

electric energy: UE(t) =
1

2C
Q2(t),

magnetic energy: UB(t) =
1

2
LI2(t),

total energy: E = UE(t) + UB(t).

Mechanical oscillations:

potential energy: U(t) =
1

2
kx2(t),

kinetic energy: K(t) =
1

2
mv2(t),

total energy: E = U(t) +K(t). [lex79]

[lex80][lex87]

[lex88][lex139]
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Electromagnetic oscillator with two modes:

The LC circuit shown has two inductors and three capacitors. It can oscillate
in two different modes, depending on initial conditions.

In mode #1, the capacitor in the middle does not participate. It remains
uncharged.

In mode #2, there are equal currents in the left and right branches. The
current thus doubles in the middle branch.

All currents change direction after half a period as indicated by color code.

The angular frequency of mode #2 is higher that of mode #1. When the LC
circuit is launched from an arbitrary initial state, both modes are present
simultaneously in superposition.

mode #1: L
dI

dt
+
Q

C
+
Q

C
+ L

dI

dt
= 0, I =

dQ

dt

⇒ dI

dt
= − Q

LC
⇒ d2Q

dt2
= −ω2Q, ω =

1√
LC

mode #2: L
dI

dt
+
Q

C
+

2Q

C
= 0, I =

dQ

dt

⇒ dI

dt
= − 3Q

LC
⇒ d2Q

dt2
= −ω2Q, ω =

√
3

LC

a

b

a

b

The mechanical analogue of this oscillator consists of two masses connected
by three springs as shown. When this system oscillates in the slower mode,
both masses move in the same direction all the time and the spring in the
middle does not change its extension. The faster mode, by contrast, has the
two masses move in opposite direction all the time, which now also compresses
and stretches the spring in the middle.

The angular frequencies of the two modes are ω =

√
k

m
, ω =

√
3k

m
.

m m

k k k
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RLC circuit:

Here we return to a single-mode electromagnetic oscillator and add a resistor
in series to the capacitor and the inductor.

Loop rule: RI + L
dI

dt
+
Q

C
= 0, I =

dQ

dt
.

Linear differential equation:
d2Q

dt2
+
R

L

dQ

dt
+

1

LC
Q = 0.

Initial conditions: Q(0) = Qmax, I(0) = Q̇(0) = 0.

The solution is a damped oscillation, for which there are three regimes:

– underdamped solution: R2 <
4L

C
, ω′ =

√
1

LC
− R2

4L2

Q(t) = Qmax e
−Rt/2L

[
cos(ω′t) +

R

2Lω′
sin(ω′t)

]
,

– overdamped motion: R2 >
4L

C
, Ω′ =

√
R2

4L2
− 1

LC

Q(t) = Qmax e
−Rt/2L

[
cosh(Ω′t) +

R

2LΩ′
sinh(Ω′t)

]
,

– critically damped solution: R2 =
4L

C
, ω′ → 0 or Ω′ → 0

Q(t) = Qmax e
−Rt/2L

[
1 +

R

2L
t

]
.

t

Q(t)

t

I(t)

Initially all energy is on the capacitor. In the underdamped regime, energy
shuttles between capacitor and inductor as part of it is dissipated in the
resistor. In the other two regimes, no energy returns to the capacitor.

The rate of energy dissipation in the resistor, RI2, is propertional to the
amount of energy storage in the inductor, LI2/2.

20


