
Magnetostatics I [lln12]

Here we begin a discussion of situations involving static, i.e. time-independent
magnetic fields. One source of such fields are steady electric currents, i.e.
moving electric charges.

The term magnetostatics does not exactly have the same standing as the
term electrostatics used previously.

Conduction currents are made of moving charged particles. Steady electric
currents are consistent with time-independent charge densities on a meso-
scopic length scale if hey are divergence-free.

It is common practice to discuss some effects of a static magnetic field before
the sources of a static magnetic field are introduced.

Lorentz force:

In a region of space where a static electric field E and a static magnetic field
B are present, a charged particle experiences the force,

F = q(E + v ×B).

Electrostatic limit: v = 0, B = 0 ⇒ F = qE.

Magnetic force on a charged particle:

Magnetic field: B = B k̂ [T=N/Am] (Tesla).

Initial velocity: v0 = v0 ĵ [m/s].

Initial force: F0 = qv0B î [N].

The orthogonality, F ⊥ v, conserves the speed v0 .

Centripetal force required and provided:
mv20
r

= qv0B. [lex50][lex62]

[lex71]

Radius of circular orbit: r =
mv0
qB

.

Cyclotron frequency: ω =
v0
r

=
qB

m
.

Note that ω is independent of v0 and r.
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Magnetic force on current-carrying conductor:

A conductor of length L and cylindrical shape (e.g. a metal wire or a pipe
filled with electrolyte) is positioned along the x-axis. A uniform magnetic
field in y-direction is present. An applied voltage generates a uniform electric
field inside the conductor, which drives a steady current.

Electric field: E = E î [N/C].

Charge carriers: qi [C].

Drift velocities: vi = vix î [m/s].

Number densities: ni [m−3].

Magnetic field: B = B ĵ [T].

Magnetic force on charge carrier: Fi = qivi ×B = qivixB k̂ [N].

Current density: J =
∑
i

qinivi =
∑
i

qinivix î = J î [A/m2].

Cross-sectional area: a = a î [m2].

Current: I =

∫
da · J = Ja = a

∑
i

qinivix [A].

Length vector: L = L î (consistent with vector a).

Force on conductor: F = aL
∑
i

niFi = ILB k̂ = IL×B [N].
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Generalization to a wire
of more general shape:

F = I

∫
wire

ds×B.
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Biot-Savart law:

Among the various sources of magnetic field, we consider here one of the
most common. A wire carrying a steady current generates a static magnetic
field in the space around it.

The Biot-Savart law is an application of more fundamental laws to this sce-
nario. It is of practical value for the calculation of the magnetic field B
generated by a steady current I through a thin wire of arbitray shape:

B(x) =
µ0

4π

∫
wire

Idl× r̂

r2
=
µ0

4π

∫
wire

Idl× (x− x′)

|x− x′|3
, (1)

B µ0 = 4π × 10−7Tm/A: permeability constant,

B x′: position of source point,

B x: position of field point,

B dl: infinitesimal wire segment in current direction,

B r = x− x′: distance vector pointing from source point to field point,

B r̂ = r/r: unit vector pointing from source point to field point.

Generalization of the Biot-Savart law to conductors of arbitrary shape with
given current density J(x′) inside:

B(x) =
µ0

4π

∫
cond.

d3x′
J(x′)× (x− x′)

|x− x′|3
. (2)

Bridge from (2) to (1):1 d3xJ da · dl︸ ︷︷ ︸
d3x

J da · J︸ ︷︷ ︸
I

dl. [lex51][lex52]

[lex59][lex60]

[lex129]
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1This transformation is not generally valid. It relies on the assumption that da, l,J are
vectors of the same direction.
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Magnetic flux:

Consider a surface S of arbitrary shape divided into infinitesimal elements
of area da, represented as vectors da directed perpendicular to the surface.

For open surfaces one of two directions is chosen. For closed surfaces the
convention is that da points toward the outside.

Magnetic flux through an arbitrary surface S:

ΦB =

∫
S

B · da [Tm2] = [Wb] (Weber).

The variation in time of magnetic flux through open surfaces plays an im-
portant role in magnetic induction (a later topic).

Hdfr *\,
B Jfi

OPH hJ S CLff$fr M
s

Gauss’s law for the magnetic field:

Integral version:

∮
S

B · da = 0.

In words: the magnetic flux through any closed surface vanishes identically.

Implication: there are no magnetic charges (monopoles).

Differential version: ∇ ·B = 0.

The two versions are related by Gauss’s theorem.

Electrostatic field lines begin and end at electric charges or at infinity. Mag-
netic field lines have no ends. The ones shown close in themselves. There
are electrodynamic field lines that also close in themselves (a later topic).
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Ampère’s law restricted to steady states:

Assumptions: static magnetic fields, steady electric currents.

Differential version: ∇×B = µ0 J.

Integral version:

∮
C

B · dl = µ0

∫
S

J · da = µ0Ien.

The open surface S is surrounded by the loop C.

The two versions of Ampère’s law are related by Stokes’ theorem.

The current Ien, enclosed by loop C, is the flux of the current density J
through the open surface S.

Right-hand rule: If the loop C is traversed cw (ccw), then the area vector is
directed in (out). [lex65]

B
Gt,

13 J (fr)

"{a da
sCrur*

C

*

Magnetostatics and electrostatics:

(B1) ∇ ·B = 0: the magnetic field is solenoidal (has zero diveergence);

(E1) ∇ · E = ρ/ε0: electric charges control the divergence of E;

(B2) ∇×B = µ0J: conduction currents control the curl of B;

(E2) ∇× E = 0: the electric field is irrotational (has zero curl).

Equations (B1) and (E1) hold in all situations. Equations (B2) and (E2)
hold only for time-independent fields.

Conservation of electric charge implies that any charge entering a region V
causes a flux of current density through its surface S:

dQ

dt
=

∫
V

d3x
∂ρ

∂t
= −

∮
S

da · J = −
∫
V

d3x∇ · J ⇒ ∂ρ

∂t
+∇ · J = 0.

Charge density ρ and current density J must satisfy the continuity equation.

In magnetostatics we have
∂ρ

∂t
= 0, which implies ∇ · J = 0.
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Consistency of the Biot-Savart law with Ampère’s law:

Steady current I around loop C ′.

Magnetic field: B(x) =
µ0I

4π

∮
C′

dx′ × r̂

r2
(Biot-Savart law).

Integral around Amperian loop C: γ
.
=

∫
C

dx ·B(x).

Distance vector: r
.
= x− x′ (from source point to field point).

Unit vector: r̂
.
=

r

r
.

Mathematical identity: (a× b) · c = (c× a) · b.

⇒ γ =
µ0I

4π

∮
C

∮
C′

(dx′ × r̂) · dx
r2

=
µ0I

4π

∮
C

∮
C′

(dx× dx′) · r̂
r2

.

Vector r traces closed surface S.

Element of area vector on S: da = dx× dx′.

Element of solid angle on S: dΩ =
da · r̂
r2

.

⇒ γ =
µ0I

4π

∮
S

da · r̂
r2

=
µ0I

4π

∮
S

dΩ.

Case #1: Loops C and C ′ are not interlinked.
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Vector r traces surface S from a point outside.

All elements of solid angle within a limited range contribute twice, with
opposite sign.

Solid angle:

∮
S

dΩ = 0 ⇒ γ = 0 .

⇒
∫
C

dx ·B(x) = 0 (Ampère’s law if loop encloses no net current).
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Case #2: Loops C and C ′ are interlinked.
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Vector r traces surface S from a point inside.

All elements of solid angle over complete range contribute once, with
positive sign.

Solid angle:

∮
S

dΩ = 4π ⇒ γ = µ0I.

⇒
∫
C

dx ·B(x) = µ0I (Ampère’s law if loop encloses current I).

The above demonstration shows that the Biot-Savart law is consistent with
the restricted version of Ampère’s law, known to hold if there are no time-
dependent electric or magnetic fields involved.

Vector potential:

The unique specification of the vector potential A in the restricted context
of magnetostatics has three parts:

B relation to magnetic field: ∇×A = B,

B Coulomb gauge condition:2 ∇ ·A = 0,

B boundary conditions: e.g. lim
|x|→∞

A(x) = 0.

Consequence of Ampère’s law: ∇× (∇×A) = µ0J.

Mathematical identity applied to vector potential:

∇× (∇×A) = ∇ (∇ ·A)︸ ︷︷ ︸
0

−∇2A = −∇2A.

Poisson equation for vector potential: −∇2A(x) = µ0J(x).

2The concept of gauge invariance will be discussed in the context of electrodynamics
[lln15]. In the context of magnetostatics, the two major gauge conditions are equivalent.

7



Integral expression:3 A(x) =
µ0

4π

∫
d3x′

J(x′)

|x− x′|
.

The Poisson equation follows by use of ∇2

(
1

|x− x′|

)
= −4πδ(x− x′).

Biot-Savart result: B(x) =
µ0

4π

∫
d3x′

J(x′)× (x− x′)

|x− x′|3
.

The Biot-Savart integral expression for B(x) follows from the integral ex-
pression for the vector potential A(x) via B = ∇×A.

– Use identity: ∇
(

1

|x− x′|

)
= − x− x′

|x− x′|3
.

– Use identity: ∇×[fJ(x′)] = f [∇×J(x′)]−J(x′)×(∇f), f
.
=

1

|x− x′|
.

– Curl acts on variable x, implying ∇× J(x′) = 0.

– Consequence: ∇×
(

J(x′)

|x− x′|

)
= −J(x′)×

(
∇ 1

|x− x′|

)
.

⇒ B(x) = ∇×
[
µ0

4π

∫
d3x′

J(x′)

|x− x′|

]
︸ ︷︷ ︸

A(x)

= −µ0

4π

∫
d3x′J(x′)×

(
∇ 1

|x− x′|

)
︸ ︷︷ ︸

use identity

=
µ0

4π

∫
d3x′

J(x′)× (x− x′)

|x− x′|3

Vector potential for uniform magnetic field: A(x) =
1

2
B0 × x.

∇×A =
1

2
∇× (B0 × x)

=
1

2

[
B0 (∇ · x)︸ ︷︷ ︸

3

−x (∇ ·B0)︸ ︷︷ ︸
0

+ (x · ∇)B0︸ ︷︷ ︸
0

− (B0 · ∇)x︸ ︷︷ ︸
B0

]
= B0.

A region of uniform magnetic field is free of electric currents:

A(x) =
1

2
B0 × x ⇒ ∇2A = 0 ⇒ J = 0.

3Note of caution: Only for Cartesian coordinates can this vector equation be split into
equations for components, e.g. for Ax(x) and Jx(x

′) etc. Integrals of vector quantities
expressed in curvilinear coordinates require extreme care.
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Magnetic dipole moment:

Consider a localized source of steady current specified by a current density
J(x′) flowing in a region V of finite extension.

Vector potential: A(x) =
µ0

4π

∫
V

d3x′
J(x′)

|x− x′|
.

Long-distance asymptotics associated
with monopole, dipole, ...

1

|x− x′|
=

1

r
+

r̂ · x′

r2
+ O

(
r′2

r3

)
,

Leading term: A(x)mon
.
=

1

r

∫
V

d3x′J(x′),

?
-l>
X -\r -.L )x*x

itx')
v-+

x

x
\

– Mathematical identity: ∇ · (xiJ) = xi(∇ · J) + J · ∇xi.
– Note change in notation: x→ x1, y → x2, z → x3.

– Steady currents are non-divergent: ∇ · J = 0.

– Gradients: ∇x1 = î, ∇x2 = ĵ, ∇x3 = k̂.

– Consequence: ∇ · (xiJ) = Ji.

– Use Gauss’s theorem and that region V has finite extension:∫
V

d3x′Ji(x
′) =

∫
V

d3x′∇′ · [x′iJ(x′)] = lim
r→∞

∮
S

da · [x′iJ(x′)] = 0.

– Steady currents are no source of magnetic monopoles: A(x)mon = 0.

Next leading term: A(x)dip
.
=

µ0

4πr2

∫
V

d3x′ J(x′)r̂ · x′.

Magnetic dipole moment: m
.
=

1

2

∫
V

d3x′ x′ × J(x′).

If r̂ is a (fixed) unit vector pointing to a distant field point x, the following
relation can be proven to hold: [lex190]∫

V

d3x′ J(x′)r̂ · x′ = m× r̂ =
m× x

r
.

Vector potential of magnetic dipole: A(x) =
µ0

4π

m× r̂

r2
=
µ0

4π

m× x

|x|3
.

This is the leading term of the vector potential at a distant field point gen-
erated by a local current distribution.
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Magnetic dipole field: B(x) = ∇×A(x) =
µ0

4π

[3r̂ (m · r̂)−m]

r3
.

[lex36]

Expressions in spherical coordinates:

– magnetic dipole: m = m k̂ = m cos θ r̂−m sin θ θ̂,

– position: x = r r̂,

– vector potential: A(x) =
µ0m

4πr2
sin θ φ̂,

– dot products: m · r̂ = m cos θ, m · θ̂ = −m sin θ,

– magnetic field: B(x) =
µ0m

4πr3
[
2 cos θ r̂ + sin θ θ̂

]
.
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Magnetic dipole moment of plane current loop:

– Wire segment in current direction: dl.

– Current I is flux of current density J.

– Vector quantity equivalence for wire: J(x)d3x = Idl.

– Triangular element of loop area: da =
1

2
x× dl.

– Area vector of loop: a.

– Magnetic dipole moment: [lex63][lex64]

[lex78]

m
.
=

1

2

∫
d3xx× J(x) =

I

2

∮
C

x× dl = I

∫
S

da = Ia.
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Torque and force acting on magnetic dipole:

Torque N on loop in uniform magnetic field: B:

– Current segment: Idx.

– Force on current segment: dF = Idx×B

– Torque on plane current loop: N =

∮
C

x× dF =

∮
C

x× (Idx×B).

– Exact differential: d[x× (x×B)] = x× (dx×B) + dx× (x×B).

– Loop integral of exact differential vanishes.

⇒ I

∮
C

x× (dx×B) = −I
∮
C

dx× (x×B).

⇒ N =
I

2

∮
C

[x× (dx×B)−dx× (x×B)︸ ︷︷ ︸
+dx× (B× x)

].

– Mathematical identity: a× (b× c) + b× (c× a) + c× (a× b) = 0.

⇒ N = −I
2

∮
C

B× (x× dx) =
I

2

∮
C

(x× dx)×B = m×B.

Orientational potential energy U in uniform magnetic field B:

– Directional change of magnetic moment: dm = dθ ×m.

– Increment in potential energy: dU = −N · dθ.

⇒ dU = −(m×B) · dθ = −(dθ ×m) ·B = −dm ·B.

⇒ U = −m ·B.
[lex130][lex131]

[lex133][lex136]

[lex148]
Force F(x) on magnetic dipole in nonuniform magnetic field B(x)

F(x) = −∇U = ∇[m ·B(x)].
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