Surface Electric Dipole Layers [lam9]

Boundary conditions of electrostatic situations often involve surface charge densities $\sigma(\mathbf{x})$. They produce discontinuities in the normal component of the electric field as discussed and used in [lln5].

Discontinuities in the electric potential $\Phi(\mathbf{x})$, not nearly as often in evidence, can be produced by double layers $+\sigma(\mathbf{x})$ and $-\sigma(\mathbf{x})$, separated by a small distance $d(\mathbf{x})$.

Surface electric dipole density: $D(\mathbf{x}) \doteq \lim_{d(\mathbf{x}) \to 0} \sigma(\mathbf{x}) d(\mathbf{x}).$

Electric potential of a surface electric dipole layer:

$$\Phi(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \int_S da' \sigma(\mathbf{x}') \left[\frac{1}{|\mathbf{x} - \mathbf{x}'|} - \frac{1}{|\mathbf{x} - \mathbf{x}' + \hat{\mathbf{n}} d(\mathbf{x}')|} \right]$$
(1)

Expand the second term: $\frac{1}{|\mathbf{x} + \mathbf{b}|} \stackrel{|\mathbf{b}| \ll |\mathbf{x}|}{=} \frac{1}{|\mathbf{x}|} + \mathbf{b} \cdot \nabla \left(\frac{1}{|\mathbf{x}|}\right).$

Convert the integrand: $\hat{\mathbf{n}} \cdot \nabla' \left(\frac{1}{|\mathbf{x} - \mathbf{x}'|} \right) da' = -\frac{\cos \theta da'}{|\mathbf{x} - \mathbf{x}'|^2} = -d\Omega.$

$$\Rightarrow \Phi(\mathbf{x}) = -\frac{1}{4\pi\epsilon_0} \int_S d\Omega D(\mathbf{x}').$$
(2)

The position \mathbf{x} of the field point is hidden in the element of solid angle $d\Omega$ in expression (2):

- Consider a flat and uniform dipole density D with two field points close by on opposite sides: $\int d\Omega = \pm 2\pi \implies \Delta \Phi = D/\epsilon_0$.
- Consider a field point inside a closed surface of uniform dipole density: $\int d\Omega = 4\pi \quad \Rightarrow \quad \Phi_{\rm int} = -D/\epsilon_0.$
- Consider a field point outside a closed surface of uniform dipole density: $\int d\Omega = 0 \quad \Rightarrow \quad \Phi_{\text{int}} = 0.$

