
Electrostatic Energy of Point Charges:
Self-Energy and Interaction Energy [lam8]

We have noted in [lln5] that the expression,
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for the potential energy of a charge distribution ρ(x) is not equivalent to the
expression,
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for the potential interaction energy of an array of discrete charges qi. The
former expression converted into an integral over energy density w(x) as
demonstrated in [lln5],
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is manifestly non-negative, whereas the latter expression can be negative (e.g.
for two point charges of opposite sign).

We have also shown in [lln5] how the the integral expressions in (3) can be
split into the sum of self-energy and interaction energy.

The energy density generated by the electric field of two point charges is
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The first two terms represent, upon integration, the electrostatic self-energies,
which are divergent and not included in Uint as constructed in (2).

Divergent charge densities or energy densities do not, in general, produce
infinite self-energies. The problem here is caused by having finite charges
concentrated in points, which yields strong (non-integrable) divergences.

The last term in (4) represents Uint and can be transformed (upon integration)
as follows [lex120]:
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