
Quantum Time Evolution and Measurement [lam6]

Classical time evolution:

The time evolution of classical dynamical systems is expressed by differential
equations for dynamical variables such as the following:

B Lagrange equations are second-order ODEs for generalized coordinates,

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0 : i = 1, . . . , n,

derived from a Lagrangian function L(q1, . . . , qn; q̇1, . . . , q̇n).

B Canonical equations are first-order ODEs for canonical coordinates,

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

: i = 1, . . . , n,

derived from a Hamiltonian function H(q1, . . . , qn; p1, . . . , pn).

B Hamilton’s equations are first-order equations for a set of elementary
variables for which an energy function and symplectic structure have
been established:

– Elementary dynamical variables: u1, . . . , um.

– Energy function: H̄(u1, . . . , um).

– Symplectic structure (set of elementary Poisson brackets):

{ui, uj} = Bij(u1, . . . , um).

– Hamilton’s equations: u̇i = {ui, H̄}.

The time evolution of an arbitrary dynamical variable follows as it is con-
structed as a function of the qi, q̇i or qi, pi or ui.

The time evolution is deterministic if the state of the system is specified as
a set of initial conditions for the applicable variables.

Determinism in the classical time evolution is undermined by computational
instabilities in nonintegrable i.e. chaotic systems:

– Mapping out the trajectory of a classical dynamical system over a given
time interval and a given mesh size requires N bits of information.

– Computing the same trajectory with acceptable accuracy takes M bits
of information.

– The N bits are used for encoding coordinates whereas the M bits are
used for encoding the algorithm and the initial conditions.
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– Determinacy of classical dynamics can be declared to hinge on whether
the ratio M/N tends toward zero or a nonzero value as the time interval
of the trajectory in question grows to infinity.

– Trajectories with nearby initial conditions tend to diverge no faster
than some power of time in integrable systems but exponentially in
time in nonintegrable systems.

– The difference is related to the fact that the phase space of an integrable
system is foliated by invariant tori, which severely confine the course
of trajectories. The foliation is partially destroyed in chaotic systems.

– The consequence is that we have M = M0 + a ln t and M = M0 + bt
for integrable and nonintegrable systems, respectively. M0 reflects the
information of the algorithm and a, b are constants. On the other hand
we have N ∝ t for mapping out any kind of trajectory.

– Hence M/N → 0 applies (in general) only to integrable systems. The
time evolution is truly deterministic in the sense that the N bits used to
map out the trajectory are unnecessary. The course of that trajectory
is predictable by the much smaller number of M bits.

– In chaotic systems, on the other hand, M/N remains nonzero for long
trajectories. The number of digits needed to specify the initial condi-
tions with sufficient accuracy grows proportional to t. The N bits used
to map out the trajectory are not made redundant by the algorithm.

Quantum time evolution:

In quantum mechanics, indeterminacy comes into play quite differently.

– The time evolution of state vectors or density operators is linear, thus
free of the instabilities associated with nonlinear equations of motion
that govern classical trajectories.

– The initial conditions classically encapsulated in a phase point are sub-
ject to the quantum indeterminacy ∆Q∆P ≥ 1

2
~ discussed in [lam4].

– Irreducible quantum indeterminacy is manifest in expectation values
and variances or covariances associated with observables represented
by non-commuting operators.

In the following we briefly describe how the quantum time evolution is de-
scribed as carried by state vectors, observables, or density operators.
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Schrödinger equation:

The time evolution of a pure quantum state |ψ(t)〉 of a quantum system
specified by Hamiltonian H is governed by the Schrödinger equation,

ı~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉.

We consider an autonomous system H0 (e.g. an atom), which then experi-
ences a time-dependent perturbation V(t) (e.g. an electromagnetic wave):

H(t) = H0 + V(t).

Eigenvalue equation: H0|n〉 = En|n〉 : n = 0, 1, 2, . . .

Non-stationary state: |ψ(t)〉 = cn(t)|n〉.

Time evolution under H0: |ψ(t)〉 =
∑
n

cn(0)e−ıωnt|n〉.

ı~ċn|n〉 = En|n〉 ⇒ cn(t) = cn(0)e−ıωnt, ~ωn = En.

Effect of V(t) on time evolution: the expansion coefficients become (more or
less slowly) time-dependent: cn(0)→ c̃n(t).

Ansatz: |ψ(t)〉 =
∑
n

c̃n(t)e−ıωnt|n〉.

Substitution into Schrödinger equation:

ı~
∑
n

˙̃cn(t)e−ıωnt|n〉+ ı~
∑
n

(−ıωn)c̃n(t)e−ıωnt|n〉︸ ︷︷ ︸
=

︷ ︸︸ ︷∑
n

(~ωn)c̃n(t)e−ıωnt|n〉+
∑
n

c̃n(t)e−ıωntV(t)|n〉.

Multiply simplified equation with 〈m|eıωmt:

ı~ ˙̃cn(t) =
∑
mn

eı(ωm−ωn)t〈m|V(t)|n〉c̃n(t).

Interaction representation: ı
∂

∂t
|ψ̃(t)〉 = Ṽ(t)|ψ̃(t)〉,

|ψ̃(t)〉 .= eıH0t/~|ψ(t)〉 =
∑
n

c̃n(t)|n〉, Ṽ(t)
.
= eıH0t/~V(t)e−ıH0t/~.

Coupled linear ODEs for expansion coefficients:

⇒ d

dt
c̃n(t) = − ı

~
∑
nm

Ṽnm(t)c̃m(t), Ṽnm(t)
.
= eı(ωn−ωm)t〈n|V(t)|m〉.
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Heisenberg equation:

Consider autonomous system with Hamiltonian H.

Time evolution operator: U(t)
.
= e−ıHt/~.

Unitarity: U † = eıHt/~ ⇒ U †U = I.

Schrödinger equation: ı~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉.

Formal solution: |ψ(t)〉 = U(t)|ψ(0)〉.

Expectation value of operator A:

〈ψ(t)|A|ψ(t)〉 = 〈ψ(0)|U †(t)AU(t)|ψ(0)〉 = 〈ψ(0)|A(t)|ψ(0)〉.

– In the expression on the left, the time evolution is carried by the state
and governed by the Schrödinger equation (above).

– In the expression on the right, the time evolution is carried by the
observable and governed by the Heisenberg equation (below).

Time evolution of A: A(t) = U †(t)AU(t) = eıHt/~Ae−ıHt/~.

⇒ d

dt
A(t) =

dU †

dt
AU + U †AdU

dt
.

Use
dU †

dt
=
ı

~
U †H, dU

dt
= − ı

~
HU , [H,U ] = [H,U †] = 0.

⇒ d

dt
A(t) =

ı

~

(
U †HAU − U †AHU

)
=
ı

~

(
HU †AU − U †AU H

)
.

Heisenberg equation:
d

dt
A(t) =

ı

~
[H,A(t)].

Von Neumann equation:

Mixed quantum state of autonomous system: ρ =
∑
ψ

|ψ〉〈ψ|.

Its time evolution can be constructed using the Schrödinger equation:

∂ρ

∂t
=
∑
ψ

(
∂|ψ〉
∂t
〈ψ|+ |ψ〉∂〈ψ|

∂t

)
= − ı

~
∑
ψ

(
H|ψ〉〈ψ| − |ψ〉〈ψ|H

)
.

Von Neumann equation:
∂ρ

∂t
= − ı

~
[H, ρ] (quantum Liouville equation).
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Application to H(t) = H0 + V(t) with H0|n〉 = ~ωn|n〉:

Von Neumann equation:
∂ρ

∂t
= − ı

~
[H0, ρ]− ı

~
[V(t), ρ].

Interaction representation: ρ(t) = e−ıH0t/~ρ̃(t)eıH0t/~.

⇒ ∂ρ

∂t
= − ı

~

(
H0ρ− ρH0︸ ︷︷ ︸

[H0,ρ]

)
+ e−ıH0t/~∂ρ̃

∂t
eıH0t/~.

Substitute these expressions into von Neumann equation:

⇒ e−ıH0t/~∂ρ̃

∂t
eıH0t/~ = − ı

~

(
V(t)e−ıH0t/~ρ̃eıH0t/~ − e−ıH0t/~ρ̃e−ıH0t/~V(t)

)
.

⇒ ∂ρ̃

∂t
= − ı

~

(
eıH0t/~V(t)e−ıH0t/~︸ ︷︷ ︸

Ṽ(t)

ρ̃− ρ̃ eıH0t/~V(t)e−ıH0t/~︸ ︷︷ ︸
Ṽ(t)

)
= − ı

~
[Ṽ(t), ρ̃].

From density operator to density matrix:

ρ =
∑
nm

ρnm|n〉〈m| ⇒ ρ̃ = eıH0t/~ρe−ıH0t/~ = ρnme
ıH0t/~|n〉〈m|e−ıH0t/~.

⇒ ρ̃nm = ρnme
ı(ωn−ωm)t.

Interaction matrix elements: Ṽnm(t) = Vnm(t)eı(ωn−ωm)t.

Von Neumann equation in matrix representation is a set of linear ODEs with
time-dependent coefficients:

∂

∂t
ρ̃ = − ı

~
∑
k

(
Ṽnk(t)ρ̃km − ρ̃nkṼkm(t)

)
.

Effect of measurement on pure quantum state:

What is being measured is an observable A (Hermitian operator).

Eigenbasis of A: A|n〉 = an|n〉 with real an.

Pure quantum state prior to measuement: |ψ〉 =
∑
n

|n〉〈n|ψ〉 (normalized).

Action of operator A: A|ψ〉 =
∑
n

an|n〉〈n|ψ〉.

Expectation value: 〈ψ|A|ψ〉 =
∑
n

an|〈n|ψ〉|2 =
∑
n

anPn.

Probability of measuring value anof observable A: Pn = |〈n|ψ〉|2.
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If the state |ψ〉 is not an eigenstate of the observable A then the measuement
outcome is subject to uncertainty, encoded in a non-vanishing variance:

(∆A)2
.
= 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2 =

∑
n

a2nPn −

(∑
n

anPn

)2

.

Projection operators: πn
.
= |n〉〈n|.

Post-measurement state: |φ〉 = |n〉 =
πn|ψ〉√
Pn

.

Note that the basis vectors |n〉 are only stationary states if the observable A
commutes with the Hamiltonian H.

– [A,H] = 0: |φ〉 is stationary if |ψ〉 is stationary or not.

– [A,H] 6= 0: |φ〉 is non-stationary if |ψ〉 is stationary or not.
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