
Quantum Harmonic Oscillator [lam5]

Here we summarize the quantum mechanical treatment of the linear harmonic
oscillator, i.e. in a one-dimensional configuration space.

Hamiltonian: H =
1

2m
P2 +

1

2
mω2Q2.

Hermitian operators: H, P , Q, I.

Fundamental commutator: [Q,P ] = ı~I.

Position space:

Wave function of stationary state: ψ(x).

Inner product: 〈ψ|ψ′〉 =

∫ +∞

−∞
dxψ∗(x)ψ′(x) = 〈ψ′|ψ〉∗.

Normalization: 〈ψ|ψ〉 =

∫ +∞

−∞
dxψ∗(x)ψ(x)=1.

Operators: Q = x, P = −ı~ d
dx
, H = − ~2

2m

d2

dx2
+

1

2
mω2x2.

Eigenvalue equation: Hψ(x) = Eψ(x).

Energy levels: En = ~ω
(
n+

1

2

)
, n = 1, 2, . . .

Eigenfunctions: ψn(x) =
(mω
π~

)1/4 1√
2nn!

exp

(
−mωx

2

2~

)
Hn

(√
mω

~
x

)
.

Hermite polynomials: Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

Ground state: ψ0(x) =
(mω
π~

)1/4
exp

(
−mωx

2

2~

)
.

Scaled position variable: x̄
.
=

x√
2~/mω

.

The wave functions are symmetric for even n and antisymmetric for odd n.
They have parity (−1)n.

The probability distribution for position approaches the classical prediction
in an average sense as n→∞ if subjected to appropriate rescaling.

The quantum result is strongly oscillating. Convergence toward the classical
result is manifest when averaged between successive maxima or minima.
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n = 25

classical probability

Classical probability density for the scaled position x̂(t)
.
= x(t)/x0 [lex182]:

Px(x̂) =
2

τ

∫ +τ/4

−τ/4
dt δ
(
x̂− sin(ωt)

)
=

1

π

1√
1− x̂2

, τ =
2π

ω
. (1)

Momentum space:

Wave function of stationary state: ψ̃(p).

Operators: Q = ı~
d

dp
, P = p, H =

1

2m
p2 − 1

2
mω2 d

2

dp2
.

Parameter substitution: mω =
1

µω
.

Equivalent Hamiltonian: H = − ~2

2µ

d2

dp2
+

1

2
µω2p2.

Eigenfunctions: ψ̃n(p) =

(
1

πm~ω

)1/4
1√
2nn!

exp

(
− p2

2m~ω

)
Hn

(
p√
m~ω

)
.

Scaled momentum variable: p̄
.
=

p√
2m~ω

.

Classical probability density for the scaled momentum p̂(t)
.
= p(t)/p0:

Pp(p̂) =
2

τ

∫ τ/2

0

dt δ
(
p̂− cos(ωt)

)
=

1

π

1√
1− p̂2

, τ =
2π

ω
. (2)

The graphs in momentum space and position space are identical for appro-
priately scaled quantities.

The probability densities Px(x̂) and Pp(p̂) are constructed from classical time
averages to match quantum averages of stationary states.

The variables x̂ and p̂ are not statistically independent. Hence the probability
densities Px(x̂) and Pp(p̂) do not factorize.
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Classical states in phase space:

The (deterministic) classical time evolution of the scaled variables x̂(t) =
sin(ωt) and p̂ = cos(ωt) are represented in phase space by a point moving at
constant angular velocity ω in a clockwise sense.

Joint probability distribution associated with the phase point in motion:

P (x̂, p̂, t) = δ
(
x̂− sin(ωt)

)
δ
(
p̂− cos(ωt)

)
. (3)

The probability densities Px(x̂) and Pp(p̂) are recovered from this expression
by first integrating over p̂ or x̂, respectively, and the taking the time average.

Taking only the time average yields the stationary phase-space distribution,

P̄ (x̂, p̂) =
1

2π
δ
(√

x̂2 + p̂2 − 1
)
. (4)

Here probability is uniformly distributed over the unit circle, which represents
what is called an invariant torus in Hamiltonian dynamics.

The probability densities Px(x̂) and Pp(p̂) can also be recovered recovered
from this expression, by integrating over p̂ or x̂, respectively [lex184].
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We have already connected the classical probability densities (1) and (2) with
quantum wave functions in position space and momentum space, respectively.

Equivalent connections of classical probability densities (3) and (4) with
quantum states remain to be established.
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Number states:

Ladder operators (raising/lowering, creation/annihilation):

a† =
1√

2m~ω
(
mωQ− ıP

)
, a =

1√
2m~ω

(
mωQ+ ıP

)
.

⇒ P = ı

√
m~ω

2

(
a† − a

)
, Q =

√
~

2mω

(
a+ a†

)
.

The creation and annihilation refers to bosonic particles.

Fundamental commutator: [a, a†] = 1.

Hamiltonian: H = ~ω
(
a†a+

1

2

)
.

Number operator: N = a†a.

Commuting operators: [H,N ] = 0.

Number states: |n〉, n = 0, 1, 2, . . . with 〈n|n′〉 = δnn′ .

Action of ladder and number operators:

a†|n〉 =
√
n+ 1|n+ 1〉, a|n〉 =

√
n|n− 1〉 ⇒ a†a|n〉 = n|n〉.

Energy levels: En = 〈n|H|n〉 = ~ω
(
n+

1

2

)
, n = 0, 1, 2, . . .

Generation of number-state eigenvectors from ground state:

|1〉 = a†|0〉, |2〉 =
1√
2
a†|1〉 =

1√
2!

(a†)2|0〉, . . .

⇒ |n〉 =
1√
n
a†|n− 1〉 =

1√
n!

(a†)n|0〉.

The state |0〉 is the ground state (physical vacuum) and the state with n = 0
particles (pseudo-vacuum). The two vacua do not, in general, coincide.

Time evolution of number states,

ı~
d

dt
|n〉 = H|n〉 = ~ωn|n〉, ωn =

(
n+

1

2

)
ω ⇒ |n(t)〉 = |n〉e−ıωnt,

qualifies them as stationary states. The evidence will be presented below.
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Coherent states:

Construction of coherent states |α〉, where α is a complex-valued continuous
parameter, from number states |n〉:

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉,

Coherent states are normalized, but do not form an orthonormal set [lex185]:

|〈β|α〉|2 = e−|α−β|
2

.

The overcompleteness of coherent states is evident in the relations [lex185],∫
d2β |〈β|α〉|2 = π, I =

1

π

∫
d2α |α〉〈α|.

Coherent states are eigenstates of ladder operators [lex154]:

a|α〉 = α|α〉, 〈α|a† = 〈α|α∗.

The number operator has equal mean and variance in coherent states [lex154]:

〈α|N |α〉 = |α|2, 〈α|N 2|α〉 − 〈α|N |α〉2 = |α|2.

The overlap of number states with coherent states is characterized by the
Poisson distribution [lex154]:

P (n)
.
= |〈n|α〉|2 =

|α|2n

n!
e−|α|

2

.

The average values of the position and momentum operators in a coherent
state are determined by the real and imaginary parts of its complex parameter
[lex185]:

〈α|Q|α〉 .= x =

√
2~
mω
<[α], 〈α|P|α〉 .= p =

√
2m~ω=[α].

Calculating the uncertainties of the position and momentum operators in a
coherent state produces the same results as obtained for the ground state
[lex183] – the minimum value permitted by Heisenberg’s inequality [lex185]:

∆Q∆P =
1

2
~.

5



This minimum uncertainty is a consequence of the fact that coherent states
can be generated from the ground state by the action of a displacement
operator [lex155]:

|α〉 = D(α)|0〉, D(α) = eı(pQ−xP)/~ = eαa
†−α∗a.

The time evolution of coherent states as inferred from Schrödinger equation
and the time evolution of number states established earlier, is complex and
makes them non-stationary:

|α(t)〉 = e−|α0|2/2
∞∑
n=0

αn0√
n!
|n〉e−ı(n+1/2)ωt =

[
e−|α0|2/2

∞∑
n=0

[α0e
−ıωt]n√
n!

]
|n〉e−ıωt/2.
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