Quantization of the Electromagnetic Field

The purpose of this elementary introduction is tailored toward the needs of quantum optics. QED will later be introduced more systematically.

We consider a region of free space in the form of a cube of volume $V=L^{3}$ with periodic boundary conditions imposed. There are no sources present: $\rho \equiv 0, \mathbf{J} \equiv 0$.

From [lln15] we know that the (dynamic) electric and magnetic fields can by derived from a vector potential $\mathbf{A}(\mathbf{r}, t)$, which satisfies the wave equation,

$$
\nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=0, \quad c=\frac{1}{\epsilon_{0} \mu_{0}}
$$

via derivatives as follows:

$$
\mathbf{E}(\mathbf{r}, t)=-\frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B}(\mathbf{r}, t)=\nabla \times \mathbf{A}
$$

The electromagnetic field energy is

$$
U=\int_{V} d^{3} r\left[\frac{1}{2} \epsilon_{0} \mathbf{E}^{2}(\mathbf{r}, t)+\frac{1}{2 \mu_{0}} \mathbf{B}^{2}(\mathbf{r}, t)\right] .
$$

The wave equation is linear and of $2^{\text {nd }}$ order. The variables \mathbf{r} and t can be separated by a product ansatz.

The general solution can be (Fourier) expanded into orthonormal transverse plane-wave solutions:

$$
\mathbf{A}(\mathbf{r}, t)=\sum_{\mathbf{k} \lambda}\left[\bar{A}_{\mathbf{k} \lambda}(t) \mathbf{u}_{\mathbf{k} \lambda}(\mathbf{r})+\bar{A}_{\mathbf{k} \lambda}^{*}(t) \mathbf{u}_{\mathbf{k} \lambda}^{*}(\mathbf{r})\right],
$$

- spatial part of vector potential: $\mathbf{u}_{\mathbf{k} \lambda}(\mathbf{r})=\hat{\mathbf{e}}_{\mathbf{k} \lambda} e^{\imath \mathbf{k} \cdot \mathbf{r}}$,
- wave vector: $\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right), \quad n_{i}= \pm 1, \pm 2, \ldots$,
- polarization vectors: $\mathbf{k} \cdot \hat{\mathbf{e}}_{\mathbf{k} \lambda}=0, \quad \hat{\mathbf{e}}_{\mathbf{k} \lambda} \cdot \hat{\mathbf{e}}_{\mathbf{k} \lambda^{\prime}}=\delta_{\lambda, \lambda^{\prime}}, \quad \lambda=1,2$,
- right-handed triad: $\hat{\mathbf{e}}_{\mathbf{k} 1}, \quad \hat{\mathbf{e}}_{\mathbf{k} 2}, \quad \hat{\mathbf{k}} \doteq \mathbf{k} / k$,
- spatial components $\hat{e}_{\mathbf{k} \lambda}^{i}, \quad i=x, y, z$,
- relation between components: $\sum_{\lambda} \hat{e}_{\mathbf{k} \lambda}^{i} \hat{e}_{\mathbf{k} \lambda}^{j}=\delta_{i j}-\frac{k_{i} k_{j}}{k^{2}}$,
- orthonormality: $\frac{1}{V} \int_{V} d^{3} r \mathbf{u}_{\mathbf{k} \lambda}^{*}(\mathbf{r}) \cdot \mathbf{u}_{\mathbf{k} \lambda^{\prime}}(\mathbf{r})=\delta_{\mathbf{k}, \mathbf{k}^{\prime}} \delta_{\lambda \lambda^{\prime}}$,
- ODE for temporal part: $\left[c^{2} k^{2}-\frac{d^{2}}{d t^{2}}\right] \bar{A}_{\mathbf{k} \lambda}(t)=0$,
- solution of ODE: $\bar{A}_{\mathbf{k} \lambda}(t)=A_{\mathbf{k} \lambda} e^{-\imath \omega_{k} t}, \quad \omega_{k}=c k$,

The vector potential $\mathbf{A}(\mathbf{r}, t)$ is real by construction as will be the electric and magnetic fields inferred via temporal and spatial derivatives, respectively:

$$
\begin{aligned}
& \mathbf{E}(\mathbf{r}, t)=-\frac{\partial}{\partial t} \mathbf{A}(\mathbf{r}, t)=\imath \sum_{\mathbf{k} \lambda} \omega_{k}\left[\bar{A}_{\mathbf{k} \lambda}(t) \mathbf{u}_{\mathbf{k} \lambda}(\mathbf{r})-\bar{A}_{\mathbf{k} \lambda}^{*}(t) \mathbf{u}_{\mathbf{k} \lambda}^{*}(\mathbf{r})\right] \\
& \mathbf{B}(\mathbf{r}, t)=\nabla \times \mathbf{A}(\mathbf{r}, t)=\imath \sum_{\mathbf{k} \lambda} \mathbf{k} \times\left[\bar{A}_{\mathbf{k} \lambda}(t) \mathbf{u}_{\mathbf{k} \lambda}(\mathbf{r})-\bar{A}_{\mathbf{k} \lambda}^{*}(t) \mathbf{u}_{\mathbf{k} \lambda}^{*}(\mathbf{r})\right]
\end{aligned}
$$

Electromagnetic field energy is conserved:

$$
\begin{aligned}
U & =\epsilon_{0} V \sum_{\mathbf{k} \lambda} \omega_{k}^{2}\left[\bar{A}_{\mathbf{k} \lambda}(t) \bar{A}_{\mathbf{k} \lambda}^{*}(t)+\bar{A}_{\mathbf{k} \lambda}^{*}(t) \bar{A}_{\mathbf{k} \lambda}(t)\right] \\
& =\epsilon_{0} V \sum_{\mathbf{k} \lambda} \omega_{k}^{2}\left[A_{\mathbf{k} \lambda} A_{\mathbf{k} \lambda}^{*}+A_{\mathbf{k} \lambda}^{*} A_{\mathbf{k} \lambda}\right] .
\end{aligned}
$$

Transformation (in two steps) of Fourier amplitudes into real variables:

$$
\begin{gathered}
A_{\mathbf{k} \lambda}=\sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega_{k}}} \alpha_{\mathbf{k} \lambda} \\
q_{\mathbf{k} \lambda} \doteq \sqrt{\frac{\hbar}{2 \omega_{k}}}\left(\alpha_{\mathbf{k} \lambda}+\alpha_{\mathbf{k} \lambda}^{*}\right), \quad p_{\mathbf{k} \lambda} \doteq-\imath \sqrt{\frac{\hbar \omega_{k}}{2}}\left(\alpha_{\mathbf{k} \lambda}-\alpha_{\mathbf{k} \lambda}^{*}\right)
\end{gathered}
$$

Transformed electromagnetic energy:

$$
U=\frac{1}{2} \sum_{\mathbf{k} \lambda} \hbar \omega_{k}\left(\alpha_{\mathbf{k} \lambda} \alpha_{\mathbf{k} \lambda}^{*}+\alpha_{\mathbf{k} \lambda}^{*} \alpha_{\mathbf{k} \lambda}\right)=\frac{1}{2} \sum_{\mathbf{k} \lambda}\left(p_{\mathbf{k} \lambda}^{2}+\omega_{k}^{2} q_{\mathbf{k} \lambda}^{2}\right) .
$$

Plane-wave solutions are equivalent to independent modes of harmonic oscillations. The real variables $q_{\mathbf{k} \lambda}, p_{\mathbf{k} \lambda}$ are canonical variables.

The quantization of canonical variables is a standard affair. The $q_{\mathbf{k} \lambda}, p_{\mathbf{k} \lambda}$ are replaced by Hermitian operators, $Q_{\mathbf{k} \lambda}, P_{\mathbf{k} \lambda}$, with commutation rules,

$$
\left[Q_{\mathbf{k} \lambda}, P_{\mathbf{k}^{\prime} \lambda^{\prime}}\right]=\imath \hbar \delta_{\mathbf{k}, \mathbf{k}^{\prime}} \delta_{\lambda, \lambda^{\prime}}, \quad\left[Q_{\mathbf{k} \lambda}, Q_{\mathbf{k}^{\prime} \lambda^{\prime}}\right]=\left[P_{\mathbf{k} \lambda}, P_{\mathbf{k}^{\prime} \lambda^{\prime}}\right]=0 .
$$

The quantization of the transformed Fourier amplitudes $\alpha_{\mathbf{k} \lambda}, \alpha_{\mathbf{k} \lambda}^{*}$ produces boson creation and annihilation operators $a_{\mathbf{k} \lambda}, a_{\mathbf{k} \lambda}^{\dagger}$:

$$
\begin{gathered}
Q_{\mathbf{k} \lambda} \doteq \sqrt{\frac{\hbar}{2 \omega_{k}}}\left(a_{\mathbf{k} \lambda}+a_{\mathbf{k} \lambda}^{\dagger}\right), \quad P_{\mathbf{k} \lambda} \doteq-\imath \sqrt{\frac{\hbar \omega_{k}}{2}}\left(a_{\mathbf{k} \lambda}-a_{\mathbf{k} \lambda}^{\dagger}\right) \\
a_{\mathbf{k} \lambda}=\frac{1}{\sqrt{2 \hbar \omega_{k}}}\left(\omega_{k} Q_{\mathbf{k} \lambda}+\imath P_{\mathbf{k} \lambda}\right), \quad a_{\mathbf{k} \lambda}^{\dagger}=\frac{1}{\sqrt{2 \hbar \omega_{k}}}\left(\omega_{k} Q_{\mathbf{k} \lambda}-\imath P_{\mathbf{k} \lambda}\right) .
\end{gathered}
$$

The commutation rules for boson ladder operators are:

$$
\left[a_{\mathbf{k} \lambda}, a_{\mathbf{k}^{\prime} \lambda^{\prime}}^{\dagger}\right]=\delta_{\mathbf{k}, \mathbf{k}^{\prime}} \delta_{\lambda, \lambda^{\prime}}, \quad\left[a_{\mathbf{k} \lambda}, a_{\mathbf{k}^{\prime} \lambda^{\prime}}\right]=\left[a_{\mathbf{k} \lambda}^{\dagger}, a_{\mathbf{k}^{\prime} \lambda^{\prime}}^{\dagger}\right]=0
$$

Number operator: $\mathcal{N}_{\mathbf{k} \lambda} \doteq a_{\mathbf{k} \lambda}^{\dagger} a_{\mathbf{k} \lambda}$.

$$
\Rightarrow\left[a_{\mathbf{k} \lambda}, \mathcal{N}_{\mathbf{k}^{\prime} \lambda^{\prime}}\right]=a_{\mathbf{k} \lambda} \delta_{\mathbf{k}, \mathbf{k}^{\prime}} \delta_{\lambda, \lambda^{\prime}}, \quad\left[a_{\mathbf{k} \lambda}^{\dagger}, \mathcal{N}_{\mathbf{k}^{\prime} \lambda^{\prime}}\right]=-a_{\mathbf{k} \lambda}^{\dagger} \delta_{\mathbf{k}, \mathbf{k}^{\prime}} \delta_{\lambda, \lambda^{\prime}}
$$

Hamiltonian of the quantized electromagnetic field:

$$
\mathcal{H}=\frac{1}{2} \sum_{\mathbf{k} \lambda} \hbar \omega_{k}\left(a_{\mathbf{k} \lambda} a_{\mathbf{k} \lambda}^{\dagger}+a_{\mathbf{k} \lambda}^{\dagger} a_{\mathbf{k} \lambda}\right)=\sum_{\mathbf{k} \lambda} \hbar \omega_{k}\left(a_{\mathbf{k} \lambda}^{\dagger} a_{\mathbf{k} \lambda}+\frac{1}{2}\right) .
$$

Photon number states $\left|n_{\mathbf{k} \lambda}\right\rangle$ of any given mode are eigenvectors of the quantum harmonic oscillator:

$$
\mathcal{N}_{\mathbf{k} \lambda}\left|n_{\mathbf{k} \lambda}\right\rangle=n_{\mathbf{k} \lambda}\left|n_{\mathbf{k} \lambda}\right\rangle, \quad n_{\mathbf{k} \lambda}=0,1,2, \ldots
$$

Action of ladder operators:

$$
a_{\mathbf{k} \lambda}^{\dagger}\left|n_{\mathbf{k} \lambda}\right\rangle=\sqrt{n_{\mathbf{k} \lambda}+1}\left|n_{\mathbf{k} \lambda}+1\right\rangle, \quad a_{\mathbf{k} \lambda}\left|n_{\mathbf{k} \lambda}\right\rangle=\sqrt{n_{\mathbf{k} \lambda}}\left|n_{\mathbf{k} \lambda}-1\right\rangle .
$$

Spectrum generated from the ground state $|0\rangle$ (physical vacuum):

$$
\left|n_{\mathbf{k} \lambda}\right\rangle=\frac{\left(a_{\mathbf{k} \lambda}^{\dagger}\right)^{n_{\mathbf{k} \lambda}}}{\sqrt{n_{\mathbf{k} \lambda}!}}|0\rangle .
$$

Quantized expressions for the vector potential and the fields:

$$
\begin{gathered}
\mathbf{A}(\mathbf{r}, t)=\sum_{\mathbf{k} \lambda} \hat{\mathbf{e}}_{\mathbf{k} \lambda} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega_{k}}}\left[a_{\mathbf{k} \lambda} e^{\imath\left(\mathbf{k} \cdot \mathbf{r}-\omega_{k} t\right)}+a_{\mathbf{k} \lambda}^{\dagger} e^{-\imath\left(\mathbf{k} \cdot \mathbf{r}-\omega_{k} t\right)}\right], \\
\mathbf{E}(\mathbf{r}, t)=\imath \sum_{\mathbf{k} \lambda} \hat{\mathbf{e}}_{\mathbf{k} \lambda} \sqrt{\frac{\hbar \omega_{k}}{2 \epsilon_{0} V}}\left[a_{\mathbf{k} \lambda} e^{\imath\left(\mathbf{k} \cdot \mathbf{r}-\omega_{k} t\right)}-a_{\mathbf{k} \lambda}^{\dagger} e^{-\imath\left(\mathbf{k} \cdot \mathbf{r}-\omega_{k} t\right)}\right], \\
\mathbf{B}(\mathbf{r}, t)=\imath \sum_{\mathbf{k} \lambda} \frac{\hat{\mathbf{k}} \times \hat{\mathbf{e}}_{\mathbf{k} \lambda}}{c} \sqrt{\frac{\hbar \omega_{k}}{2 \epsilon_{0} V}}\left[a_{\mathbf{k} \lambda} e^{\imath\left(\mathbf{k} \cdot \mathbf{r}-\omega_{k} t\right)}-a_{\mathbf{k} \lambda}^{\dagger} e^{-\imath\left(\mathbf{k} \cdot \mathbf{r}-\omega_{k} t\right)}\right] .
\end{gathered}
$$

Each term in the sum represents a single plane-wave mode. The two terms of the electric field in each mode are adjoints of each other, which makes the sum Hermitian:

$$
\mathbf{E}(\mathbf{r}, t)=\mathbf{E}^{(+)}(\mathbf{r}, t)+\mathbf{E}^{(-)}(\mathbf{r}, t), \quad \mathbf{E}^{(+)}(\mathbf{r}, t)=\mathbf{E}^{(-)}(\mathbf{r}, t)^{\dagger}
$$

Construction of photon number states in the form of tensor products:

$$
\left|\left\{n_{\mathbf{k} \lambda}\right\}\right\rangle=\left|n_{\mathbf{k}_{1} \lambda_{1}}\right\rangle \otimes\left|n_{\mathbf{k}_{2} \lambda_{2}}\right\rangle \otimes \cdots
$$

- This construction is named occupation number representation. It is also known as second quantization.
- The quantized electromagnetic field consists of an infinite set of oscillators, parametrized by \mathbf{k} and λ.
- The set of oscillators is infinite even if the electromagnetic field is confined to a finite volume V and irrespective of the boundary conditions. This is due to the fact that the field exists in a continuous space.
- The eigenvectors $\left|\left\{n_{\mathbf{k} \lambda}\right\}\right\rangle$ are number states of photons with given momentum and energy (encoded in \mathbf{k}) and polarization (encoded in λ).
- The expectation value $\left\langle\mathcal{N}_{\mathbf{k} \lambda}\right\rangle$ counts, in general, the average number of photons in a quantized mode of the electromagnetic field. For number states that number is not subject to uncertainty: $\left\langle n_{\mathbf{k} \lambda}\right| \mathcal{N}_{\mathbf{k} \lambda}\left|n_{\mathbf{k} \lambda}\right\rangle=n_{\mathbf{k} \lambda}$.
- The expectation values of the electric and magnetic fields vanish for number states:

$$
\left\langle n_{\mathbf{k} \lambda}\right| \mathbf{E}(\mathbf{r}, t)\left|n_{\mathbf{k} \lambda}\right\rangle=\left\langle n_{\mathbf{k} \lambda}\right| \mathbf{B}(\mathbf{r}, t)\left|n_{\mathbf{k} \lambda}\right\rangle=0 .
$$

- Even if all modes are in the ground state, where $\left\langle\mathcal{N}_{\mathbf{k} \lambda}\right\rangle=0$, the total electromagnetic energy in a finite volume is infinite:

$$
\mathcal{H}|0\rangle=\frac{1}{2} \sum_{\mathbf{k} \lambda} \hbar \omega_{k}|0\rangle .
$$

- Modes are distinguishable and infinite in numbers.
- Photons of one mode are indistinguishable. Their number can be any non-negative integer.
- Photons are massless spin-1 bosons. The n-photon wave function of any mode is symmetric under the permutation of any two photons.
- The symmetry attribute is implied in the occupation number representation by the unrestricted occupancy of photons in each mode.
- Limit of unrestricted space, $V=L^{3} \rightarrow \infty$:

$$
\sum_{\mathbf{k} \lambda} \longrightarrow 2\left(\frac{L}{2 \pi}\right)^{3} \int d^{3} k, \quad d^{3} k=4 \pi k^{2} d k=\frac{4 \pi}{c^{3}} \omega_{k}^{2} d \omega^{k}
$$

- Density of modes $[\ln 24]: \frac{1}{V} \frac{d N}{d \omega_{k}}=\frac{2}{V}\left(\frac{L}{2 \pi}\right)^{3} \frac{4 \pi}{c^{3}} \omega_{k}^{2}=\frac{\omega_{k}^{2}}{\pi^{2} c^{3}}$.

