
Quantization of the Electromagnetic Field [lam3]

The purpose of this elementary introduction is tailored toward the needs of
quantum optics. QED will later be introduced more systematically.

We consider a region of free space in the form of a cube of volume V = L3

with periodic boundary conditions imposed. There are no sources present:
ρ ≡ 0, J ≡ 0.

From [lln15] we know that the (dynamic) electric and magnetic fields can by
derived from a vector potential A(r, t), which satisfies the wave equation,

∇2A− 1

c2
∂2A

∂t2
= 0, c =

1

ε0µ0

,

via derivatives as follows:

E(r, t) = −∂A
∂t
, B(r, t) = ∇×A.

The electromagnetic field energy is

U =

∫
V

d3r

[
1

2
ε0E

2(r, t) +
1

2µ0

B2(r, t)

]
.

The wave equation is linear and of 2nd order. The variables r and t can be
separated by a product ansatz.

The general solution can be (Fourier) expanded into orthonormal transverse
plane-wave solutions:

A(r, t) =
∑
kλ

[
Ākλ(t)ukλ(r) + Ā∗kλ(t)u

∗
kλ(r)

]
,

– spatial part of vector potential: ukλ(r) = êkλe
ık·r,

– wave vector: k = (kx, ky, kz) =
2π

L
(nx, ny, nz), ni = ±1,±2, . . .,

– polarization vectors: k · êkλ = 0, êkλ · êkλ′ = δλ,λ′ , λ = 1, 2,

– right-handed triad: êk1, êk2, k̂
.
= k/k,

– spatial components êikλ, i = x, y, z,

– relation between components:
∑
λ

êikλê
j
kλ = δij −

kikj
k2

,

– orthonormality:
1

V

∫
V

d3r u∗kλ(r) · ukλ′(r) = δk,k′δλλ′ ,
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– ODE for temporal part:

[
c2k2 − d2

dt2

]
Ākλ(t) = 0,

– solution of ODE: Ākλ(t) = Akλe
−ıωkt, ωk = ck,

The vector potential A(r, t) is real by construction as will be the electric and
magnetic fields inferred via temporal and spatial derivatives, respectively:

E(r, t) = − ∂

∂t
A(r, t) = ı

∑
kλ

ωk

[
Ākλ(t)ukλ(r)− Ā∗kλ(t)u∗kλ(r)

]
,

B(r, t) = ∇×A(r, t) = ı
∑
kλ

k×
[
Ākλ(t)ukλ(r)− Ā∗kλ(t)u∗kλ(r)

]
.

Electromagnetic field energy is conserved:

U = ε0V
∑
kλ

ω2
k

[
Ākλ(t)Ā

∗
kλ(t) + Ā∗kλ(t)Ākλ(t)

]
= ε0V

∑
kλ

ω2
k

[
AkλA

∗
kλ + A∗kλAkλ

]
.

Transformation (in two steps) of Fourier amplitudes into real variables:

Akλ =

√
~

2ε0V ωk
αkλ,

qkλ
.
=

√
~

2ωk

(
αkλ + α∗kλ

)
, pkλ

.
= −ı

√
~ωk

2

(
αkλ − α∗kλ

)
.

Transformed electromagnetic energy:

U =
1

2

∑
kλ

~ωk
(
αkλα

∗
kλ + α∗kλαkλ

)
=

1

2

∑
kλ

(
p2kλ + ω2

kq
2
kλ

)
.

Plane-wave solutions are equivalent to independent modes of harmonic oscil-
lations. The real variables qkλ, pkλ are canonical variables.

The quantization of canonical variables is a standard affair. The qkλ, pkλ are
replaced by Hermitian operators, Qkλ, Pkλ, with commutation rules,

[Qkλ, Pk′λ′ ] = ı~δk,k′δλ,λ′ , [Qkλ, Qk′λ′ ] = [Pkλ, Pk′λ′ ] = 0.

The quantization of the transformed Fourier amplitudes αkλ, α
∗
kλ produces

boson creation and annihilation operators akλ, a
†
kλ:

Qkλ
.
=

√
~

2ωk

(
akλ + a†kλ

)
, Pkλ

.
= −ı

√
~ωk

2

(
akλ − a†kλ

)
,

akλ =
1√

2~ωk

(
ωkQkλ + ıPkλ

)
, a†kλ =

1√
2~ωk

(
ωkQkλ − ıPkλ

)
.
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The commutation rules for boson ladder operators are:

[akλ, a
†
k′λ′ ] = δk,k′δλ,λ′ , [akλ, ak′λ′ ] = [a†kλ, a

†
k′λ′ ] = 0.

Number operator: Nkλ
.
= a†kλakλ.

⇒ [akλ,Nk′λ′ ] = akλδk,k′δλ,λ′ , [a†kλ,Nk′λ′ ] = −a†kλδk,k′δλ,λ′ .

Hamiltonian of the quantized electromagnetic field:

H =
1

2

∑
kλ

~ωk
(
akλa

†
kλ + a†kλakλ

)
=
∑
kλ

~ωk
(
a†kλakλ +

1

2

)
.

Photon number states |nkλ〉 of any given mode are eigenvectors of the quan-
tum harmonic oscillator:

Nkλ|nkλ〉 = nkλ|nkλ〉, nkλ = 0, 1, 2, . . .

Action of ladder operators:

a†kλ|nkλ〉 =
√
nkλ + 1 |nkλ + 1〉, akλ|nkλ〉 =

√
nkλ |nkλ − 1〉.

Spectrum generated from the ground state |0〉 (physical vacuum):

|nkλ〉 =
(a†kλ)

nkλ

√
nkλ!

|0〉.

Quantized expressions for the vector potential and the fields:

A(r, t) =
∑
kλ

êkλ

√
~

2ε0V ωk

[
akλe

ı(k·r−ωkt) + a†kλe
−ı(k·r−ωkt)

]
,

E(r, t) = ı
∑
kλ

êkλ

√
~ωk
2ε0V

[
akλe

ı(k·r−ωkt) − a†kλe
−ı(k·r−ωkt)

]
,

B(r, t) = ı
∑
kλ

k̂× êkλ
c

√
~ωk
2ε0V

[
akλe

ı(k·r−ωkt) − a†kλe
−ı(k·r−ωkt)

]
.

Each term in the sum represents a single plane-wave mode. The two terms
of the electric field in each mode are adjoints of each other, which makes the
sum Hermitian:

E(r, t) = E(+)(r, t) + E(−)(r, t), E(+)(r, t) = E(−)(r, t)†.
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Construction of photon number states in the form of tensor products:

|{nkλ}〉 = |nk1λ1〉 ⊗ |nk2λ2〉 ⊗ · · ·

– This construction is named occupation number representation. It is
also known as second quantization.

– The quantized electromagnetic field consists of an infinite set of oscil-
lators, parametrized by k and λ.

– The set of oscillators is infinite even if the electromagnetic field is con-
fined to a finite volume V and irrespective of the boundary conditions.
This is due to the fact that the field exists in a continuous space.

– The eigenvectors |{nkλ}〉 are number states of photons with given mo-
mentum and energy (encoded in k) and polarization (encoded in λ).

– The expectation value 〈Nkλ〉 counts, in general, the average number of
photons in a quantized mode of the electromagnetic field. For number
states that number is not subject to uncertainty: 〈nkλ|Nkλ|nkλ〉 = nkλ.

– The expectation values of the electric and magnetic fields vanish for
number states:

〈nkλ|E(r, t)|nkλ〉 = 〈nkλ|B(r, t)|nkλ〉 = 0.

– Even if all modes are in the ground state, where 〈Nkλ〉 = 0, the total
electromagnetic energy in a finite volume is infinite:

H|0〉 =
1

2

∑
kλ

~ωk|0〉.

– Modes are distinguishable and infinite in numbers.

– Photons of one mode are indistinguishable. Their number can be any
non-negative integer.

– Photons are massless spin-1 bosons. The n-photon wave function of
any mode is symmetric under the permutation of any two photons.

– The symmetry attribute is implied in the occupation number represen-
tation by the unrestricted occupancy of photons in each mode.

– Limit of unrestricted space, V = L3 →∞:∑
kλ

−→ 2

(
L

2π

)3 ∫
d3k, d3k = 4πk2dk =

4π

c3
ω2
kdω

k.

– Density of modes [lln24]:
1

V

dN

dωk
=

2

V

(
L

2π

)3
4π

c3
ω2
k =

ω2
k

π2c3
.
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