
Alternating Current Circuits [lam28]

Here we investigate the response of resistors, capacitors, and inductors in
isolation and in combinations when driven by an ac voltage source,1

E(t) = VEe
ıωt. (1)

The response of these devices is linear. The (steady-state)2 current through
the source and through each device is proportional to the amplitude VE of
the driving voltage. The angular frequency ω is unchanged.

The current through the voltage source is, generally, subject to a phase shift:

I(t) = IEe
ı(ωt−δE). (2)

The primary task for a given circuit is to determine the current amplitude
IE and the phase shift δE in this expression. Both quantities are, in general,
functions of the angular frequency ω and the device specifications R,L,C.

The impedance of the circuit is the time-independent complex quantity,3

Z
.
=
E(t)

I(t)
= |Z|eıδE , |Z| = VE

IE
. (3)

Further quantities of interests are the voltage across and the current through
individual devices – functions with the same general structure.

Single-device circuits:

Resistor circuit:

– Source and device: VE = VR, IE = IR, δE = δR.

– Ohm’s law: E(t) = RI(t) ⇒ VRe
ıωt = RIRe

ı(ωt−δR).

– Phase angle: δR = 0.

– Impedance: Z =
VR
IR

= R
.
= XR (resistance).

1Given that voltages and currents are real quantities, the understanding is that at the end
of the analysis the real part of each quantitiy is identified as physically relevant. The
real part must be taken before any nonlinear operation.

2The resistance in the wires – even when negligible for the quantities of interest here –
guarantee that transients will fade away in due course.

3All impedances have SI unit [Ω]. The magnitude |Z| is often named impedance as well.
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Capacitor circuit:

– Source and device: VE = VC , IE = IC , δE = δC .

– Charge and voltage: E(t) = VCe
ıωt =

Q(t)

C
.

– Charge and current:

I(t) =
dQ

dt
= ıωCVCe

ıωt = ωCVCe
ı(ωt+π/2) = ICe

ı(ωt−δC).

– Phase angle: δC = −π
2

.

– Impedance: Z =
VC
IC

eıδC =
1

ıωC
.
= XC (capacitive reactance).

Inductor circuit:

– Source and device: VE = VL, IE = IL, δE = δL.

– Current and voltage:

E(t) = VLe
ıωt = L

dI

dt
= ıωL ILe

ı(ωt−δL)︸ ︷︷ ︸
I(t)

= ωLILe
ı(ωt−δL+π/2).

– Phase angle: δL =
π

2
.

– Impedance: Z =
VL
IL

eıδL = ıωL
.
= XL (inductive reactance).

RLC series circuit:

In this circuit, the current (2) through the ac source is the same as the current
through the each device:

I(t) = IR(t) = IR(t) = IC(t) = IEe
ı(ωt−δE). (4)

The instantaneous voltages across the three devices add up to the instanta-
neous voltage (1) supplied by the ac source (loop rule):

E(t) = VR(t) + VL(t) + VC(t) = VEe
ıωt. (5)

The voltages across individual devices are all related to the same current as
established earlier:

VR(t) = XRI(t), VL(t) = XLI(t), VC(t) = XCI(t). (6)
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Substitution of (4) and (6) with device reactances,

XR = R, XL = ıωL, XC =
1

ıωC
, (7)

as identified earlier for single-device circuits, into (5) yields the relation,

VEe
ıωt =

(
R + ıωL+

1

ıωC

)
IEe

ı(ωt−δE), (8)

from which we extract the impedance (3) and the associated phase angle:

Z = R + ı

(
ωL− 1

ωC

)
=

√
R2 +

(
ωL− 1

ωC

)2

eıδE ,

δE = arctan

(
ωL− 1/ωC

R

)
. (9)

Graphical representations of both quantities, specifically their dependence
on the driving frequency ω are shown below. Also shown are the magnitudes
of the device reactances.

All plots and simplified expressions pertain to L = 2, C = 1, and R = 0.5 in
SI units. Some adjustments are necessary if the order of size changes.

ω

|Z|

R

1/ωC

ωL

ω0

ω

δϵ

ω0

π /2

-π /2

At low (high) frequency the capacitor (inductor) is the dominant device. At
resonance, ω0 = 1/

√
LC, the impedance is purely resistive. The same shift

of dominance is also reflected in the phase angle.
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Resonance in the RLC series circuit is associated with a maximum in the
current amplitude as shown below.

The voltages across the individual devices respond differently to variations
in ω. Starting from (6) we can write

VR(t) = RI(t) =
R

|Z|
VEe

ı(ωt−δE) = V max
R (ω)eı(ωt−δE),

VL(t) = ıωLI(t) =
ωL

|Z|
VEe

ı(ωt−δE+π/2) = V max
L (ω)eı(ωt−δE+π/2),

VC(t) =
I(t)

ıωC
=

1

ωC|Z|
VEe

ı(ωt−δE−π/2) = V max
C (ω)eı(ωt−δE−π/2). (10)

The voltage amplitude across the resistor typically has a low maximum,
V max
R (ω0) = VE , at ω0 = 1/

√
LC.

ω

Iϵ

ω0

Vϵ /R

ω

VR
max

Vϵ

ω0

The voltage amplitudes across the inductor and the capacitor typically have
much higher maxima [lex193],

V max
L (ωL) = V max

C (ωC) =
V max
0√

1− τRC/4τRL
, V max

0 = VE

√
τRL
τRC

, (11)

at the shifted frequencies,

ωL =
ω0√

1− τRC/2τRL
> ω0, ωC = ω0

√
1− τRC/2τRL < ω0. (12)

In these expressions we have used the relaxation times associated with RC
and RL circuits, which are in relation to the resonance frequency as follows:

τRC = RC, τRL =
L

R
, τRCτRL =

1

ω2
0

. (13)
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The large current amplitude near resonance is only indirectly caused by the
voltage VE supplied. That voltage amplified in the resonating circuit is what
drives the current.

RLC parallel circuit:

Here the voltage (1) supplied by the ac source acts across each device:

E(t) = VR(t) = VL(t) = VC(t) = VEe
ıωt. (14)

The instantaneous current through the three devices add up to the instanta-
neous current (2) that flows through the voltage source:

I(t) = IR(t) + IL(t) + IC(t) = IEe
ı(ωt−δE). (15)

The currents through individual devices are all related to the same voltage
as established earlier:

IR(t) =
E(t)

XR

, IL(t) =
E(t)

XL

, IC(t) =
E(t)

XC

. (16)

t{r} R In(t) L I.(t) C Iett)1l
g
j,\,

Substitution of (14) and (16) into (15) yields the relation,

VEe
ıωt

(
1

R
+

1

ıωL
+ ıωC

)
= IEe

ı(ωt−δE), (17)
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from which we extract the impedance (3) and the associated phase angle:

Z =

[
1

R
+ ı

(
ωC − 1

ωL

)]−1
=

[
1

R2
+

(
ωC − 1

ωL

)2
]−1/2

eıδE ,

δE = arctan

(
1/ωL− ωC

1/R

)
. (18)

Graphical representations of 1/|Z| and δE versus ω are shown below. Also
shown are the magnitudes of the inverse device reactances. All plots and
simplified expressions pertain to L = 2, C = 1, and R = 3 in SI units.
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Here it’s the currents through the individual devices that repsond differently
to variations of ω. Starting from (16) we can write

IR(t) =
E(t)

R
=
VE
R
eıωt = ImaxR eıωt,

IL(t) =
E(t)

ıωL
=

VE
ωL

eı(ωt−π/2) = ImaxL (ω)eı(ωt−π/2),

IC(t) = ıωCE(t) = ωCVEe
ı(ωt+π/2) = ImaxC (ω)eı(ωt+π/2). (19)

The amplitudes of the current through the power supply and the individual
devices versus ω are shown separately below.

ω

Iϵ

ω0

Vϵ /R

ω

IR
max

Vϵ /R

ω0
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The currents through the inductor and capacitor have opposite phase for any
value of ω. At resonance they have the same amplitude,

ImaxL (ω0) = ImaxC (ω0) = VE

√
C

L
. (20)

At low frequency the current through the inductor is largest and at high
frequency the current through the capacitor.

The current through the power supply has the lowest amplitude at resonance
even though large currents may flow through the reactive devices. At reso-
nance the currents through the inductor and capacitor cancel each other at
the junctions.

Circuits with other RLC combinations:

There are three combinations with two devices in series and three with two
devices in parallel. We limit their analysis to the calculation of the impedance
(3), specifically its magnitude |Z| and its phase angle δE as functions of ω.

The task is made simple by the use of the complex device reactances (7) in
combination with Kirchhoff’s laws [lln11].

Keep in mind that |Z|, R, ωL, 1/ωC have units [Ω], LC = 1/ω2
0 is the square

of an inverse (angular) frequency, and RC = τRC , L/R = τRL are relaxation
times (inverse frequencies).

In all plots of |Z| and δE we set L = 1 and C = 1 implying ω0 = 1, all in SI
units. We set R in each case such as to highlight features of interest.
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Case #1 :

fr,(h}

ftrr

R L

,rf\/

-{

Z =

(
1

R + ıωL
+ ıωC

)−1
, (21)

|Z| =

√
R2 + (ωL)2

(ωC)2[R2 + (ωL− 1/ωC)2]
, (22)

δE = arctan

(
ωL

R

[
1− LCω2 − CR

L/R

])
. (23)
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|Z|
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2

At low ω, the resistor is the dominant device. The capacitor blocks any
significant current and the inductor is close to invisible.

With increasing ω, the RL current decreases and the C current increases.
The phase of the RL current increases, in growing opposition to the phase
of the C current. Z has a maximum at ω = ω0. Here the resulting current
has a minimum and δE = 0.

At high ω, the capacitor becomes the dominant device. The inductor in-
creasingly blocks RL current. The rapidly alternating C current leaves the
capacitor largely uncharged. Its phase angle is negative.
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Case #2 :
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Z =

(
1

1/ıωC +R
+

1

ıωL

)−1
, (24)

|Z| = ωL

√
1 + (RCω)2

(RCω)2 + (LCω2 − 1)2
, (25)

δE = arctan

(
1 + LCω2[RC/(L/R)− 1]

(LCω2)(RCω)

)
. (26)
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At low ω, almost all current is L current. The impedance is very low and
the phase angle is strongly positive.

With ω increasing, the RC current increases and the L current decreases.
The combined current decreases. |Z| reaches a maximum at ω = ω0, where
phase angle changes sign.

At higher ω, the RC current begins to dominate as the L current is pro-
gressively suppressed. The phase angle goes negative and the overall current
increases again as |Z| decreases..

At very high ω (not shown), the current is controlled by the resistor alone.
The inductor becomes a current stopper and the capacitor becomes trans-
parent. Asymptotically for ω →∞ we have |Z| → R and δE → 0.
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Case #3 :

Irk]
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Z =

(
1

1/ıωC + ıωL
+

1

R

)−1
, (27)

|Z| = R|LCω2 − 1|√
(RCω)2 + (LCω2 − 1)2

, (28)

δE = arctan

(
RCω

LCω2 − 1

)
. (29)
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The R current has an ω-independent amplitude. The LC current is blocked
by the capacitor in the low-ω limit and by the inductor in th high-ω limit.

At ω = ω0 the LC current resonates. Its amplitude diverges. The impedance
touches zero. The phase angle is discontinuous.

The ω-dependence of the phase angle echoes the dominance of the resistive
device at low or high ω and the dominace of he reactive devices near the
resonce frequency.
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Case #4 :
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Z = R +

(
1

ıωL
+ ıωC

)−1
, (30)

|Z| =

√
R2 +

(
ωL

1− LCω2

)2

, (31)

δE = arctan

(
ωL

R(1− LCω2)

)
. (32)
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This case shares with case #3 an undamped resonance at ω = ω0. Here the
impedance diverges at resonance. The L and C currents cancel each other
at the two junctions and thus block any current through the resistor.

In the low-ω limit, the capacitor blocks all current and the inductor becomes
transparent, leaving the resistor in control of the current.

In the high-ω limit, it’s the inductor that blocks all current and the capacitor
that becomes invisible, again leaving the resistor in control of the current.

The shift of dominance between the resistive device and the reactive devices
is again reflected in the ω-dependence of the phase angle.
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Case #5 :

tt-tl

R
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Z =
1

ıωC
+

(
1

R
+

1

ıωL

)−1
, (33)

|Z| =

√
(ωL)2 +R2(LCω2 − 1)2

(LCω2)2 + (RCω)2
. (34)

δE = arctan

(
(RCω)2[LCω2 − 1]− (LCω2)2

(RCω)(LCω2)2

)
. (35)
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The capacitor blocks all current in the low-ω limit. Here the impedance
diverges. The phase angle at −π/2 confirms the dominance of the capacitor.

In the high-ω limit, the capacitor becomes transparent and the inductor
forces all current to go through the resistor. The impedance approaches R
and the phase angle approaches zero (not shown).

Near ω = ω0 the impedance has a minimum and the phase angle changes
sign. Here the voltages across the capacitor and the inductor are close to
opposed in phase, which facilitates a large current.
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Case #6 :

ett)
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L

Z = ıωL+

(
ıωC +

1

R

)−1
, (36)

|Z| =

√
(ωL)2 +R2(LCω2 − 1)2

1 + (RCω)2
, (37)

δE = arctan

(
L

R
ω +RCω[LCω2 − 1]

)
. (38)
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In the low-ω limit, the capacitor forces all current to go through the resis-
tor. The inductor has zero impedance in that limit. Hence the resistor is
dominant, the impendance is nonzero and finite. The phase angle is zero.

At high ω the overall current is controlled (and suppressed) by the inductor.
The phase angle approaches π/2 as the impedance diverges.

Near ω = ω0 the impedance has a minimum and the phase angle changes
sign as in case #5. The roles of inductor and capacitor interchanged. A large
current is facilitated again by opposite voltages across the reactive devices.
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