Twin Paradox

Here we use Minkowski diagrams to illustrate the famous twin paradox.
Jack and Jill are twins. They synchronize their watches (and calendars) at $t=t^{\prime}=0$. Then Jill travels into space at $v=\frac{4}{5} c$ for some time, turns around, and returns at the same speed. Time dilation: $t^{\prime} / t=\frac{3}{5}$.

Turning around is, of course, a matter in need of explanation (supplied later).

Jack's perspective:

- While Jill is outbound she ages 3 years and he ages 5 years.
- Jill turns around quickly.
- While Jill is inbound she ages 3 years and he ages 5 years.

Jill's perspective:

- While outbound she ages 3 years and Jack ages 1.8 years.
- As she turns around quickly Jack ages 6.4 years.
- While inbound she ages 3 years and Jack ages 1.8 years.

A person on a round trip necessarily involves accelerated motion. Jill might loop around a massive object for that purpose.

Clocks low in gravitational potential (close to a massive object) go more slowly than clocks higher in potential (further away from massive objects), says general relativity. Time dilation: $t_{\text {high }} / t_{\text {low }}-1 \simeq g h / c^{2}$.

However, the twin paradox can be fully understood without resorting to accelerated motion.

Consider Jack (K) standing at a station between two long trains A and B moving at constant velocity $v=\frac{4}{5} c$ relative to Jack in opposite directions.
Each train has synchronized clocks in equidistant windows and a passenger looking out.

Consider three events (and replace years by hours).

1. Jack compares the station clock with the clock on train A that happens to be opposite himself. The passenger at that window is Jill (L).
2. After $\Delta t_{12}^{\prime}=3$ (hours), Jill compares the time of her clock with the time on the clock in train B at the window opposite her, where another Jill sits.
3. After an equal time interval, $\Delta t_{23}^{\prime}=3 \mathrm{~h}$, Jill in train B arrives at Jack's station and compares the time of her clock with that of the station clock. Jack's clock has advanced $\Delta t_{13}=10 \mathrm{~h}$. The relayed timepiece of the two Jills has advanced only $\Delta t_{13}^{\prime}=6 \mathrm{~h}$.

Quantitative analysis:

- Time dilation due to relative motion between station (unprimed) and each train (primed) depending on perspective:

$$
\frac{\Delta t}{\Delta \tau}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{5}{3} \quad \text { or } \quad \frac{\Delta t^{\prime}}{\Delta \tau}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{5}{3} .
$$

- Total travel time between events 1 and 3 as recorded by clocks onboard:

$$
\Delta t_{13}^{\prime}=\Delta t_{12}^{\prime}+\Delta t_{23}^{\prime}=3 \mathrm{~h}+3 \mathrm{~h}=6 \mathrm{~h} .
$$

- Each train travels the proper distance ℓ_{0} between successive events (measured in light hours):

$$
\ell_{0}=\Delta t_{12}^{\prime} v=\Delta t_{23}^{\prime} v=3 \cdot \frac{4}{5} \mathrm{lh}=\frac{12}{5} \mathrm{lh} .
$$

- The station clock as seen from each train has dilated time intervals. The sum of the two travel times as recorded by the station clock is

$$
\Delta t_{12}+\Delta t_{23}=\frac{3}{5}(3 \mathrm{~h}+3 \mathrm{~h})=\frac{18}{5} \mathrm{~h} .
$$

- If the train clocks in event 2 are synchronized at the position of the two Jills, then they are out of sync at the station:

$$
\Delta t_{\mathrm{as}}=2 \frac{\ell_{0} v / c^{2}}{\sqrt{1-v^{2} / c^{2}}}=2\left(\frac{12}{5}\right)\left(\frac{4}{5}\right)\left(\frac{5}{3}\right) \mathrm{h}=\frac{32}{5} \mathrm{~h} .
$$

Total time between events 1 and 3 as recorded by station clock:

$$
\Delta t_{13}=\Delta t_{12}+\Delta t_{23}+\Delta t_{\mathrm{as}}=\frac{18}{5} \mathrm{~h}+\frac{32}{5} \mathrm{~h}=10 \mathrm{~h}
$$

