Skater Paradox

A skater with blades of proper length $\ell_{0}=15 \mathrm{in}$ on his skates moves with velocity $v=0.8 c$ relative to a flat ice surface, approaching a gap in the ice of proper width $d_{0}=10 \mathrm{in}$. A spectator at rest on the surface watches the skater's encounter with the gap.

Skater's perspective (frame S^{\prime}):

The gap in the ice is Lorentz contracted to a width $d=d_{0} \sqrt{1-(0.8)^{2}}=6 \mathrm{in}$, which is shorter than the proper length $\ell_{0}=15$ in of his blades. The front end A^{\prime} of the blade will gain support on the far side C of the gap before the rear end B^{\prime} loses support on the near side D. The skater concludes that he will make it across the gap without accident.

Spectator's perspective (frame S):

The blades are Lorentz contracted to length $\ell=\ell_{0} \sqrt{1-(0.8)^{2}}=9$ in, shorter than the proper length $d_{0}=10 \mathrm{in}$ of the gap in the ice. The rear end B^{\prime} of the blade loses support on the near side D of the gap before the front end A^{\prime} is able to gain support on the far side C. The spectator concludes that the skater will not make it across the gap without accident.

Analysis:

Event 1: Rear end B^{\prime} of blade enters gap at D.
Event 2: Front end A^{\prime} of blade exits gap at C.
Frame $S^{\prime}: \quad \Delta x^{\prime} \doteq x_{2}^{\prime}-x_{1}^{\prime}=\ell_{0}=15$ in,
$\Delta t^{\prime} \doteq t_{2}^{\prime}-t_{1}^{\prime}=-(15 \mathrm{in}-6 \mathrm{in}) / v=-9 \mathrm{in} / v$.
The result $\Delta t^{\prime}<0$ suggests a safe passage across the gap.
Frame $S: \quad \Delta x \doteq x_{2}-x_{1}=d_{0}=10$ in, $\Delta t \doteq t_{2}-t_{1}=(10 \mathrm{in}-9 \mathrm{in}) / v=1 \mathrm{in} / v$.
The result $\Delta t>0$ suggests that an accident will happen.

The contradictory suggestions come from relative (frame-dependent) quantities. The true answer comes from a quantitiy, the Lorentz invariant distance in spacetime,

$$
(\Delta s)^{2}=(\Delta x)^{2}-(c \Delta t)^{2}
$$

which is absolute (frame-independent).
Frame $S^{\prime}:(\Delta s)^{2}=(15 \mathrm{in})^{2}-(-9 \mathrm{in} / 0.8)^{2}=(98.4375 \mathrm{in})^{2}>0$.
Frame $S:(\Delta s)^{2}=(10 \mathrm{in})^{2}-(1 \mathrm{in} / 0.8)^{2}=(98.4375 \mathrm{in})^{2}>0$.
Events 1 and 2 have a space-like relationship. They have no definite timeordering as demonstrated. Such events cannot be causally related.

Conclusion:

The skater implies a causal relation between the two events: the front end A^{\prime} finds contact with ice before the rear end B^{\prime} loses contact. This implication is fallacious at for two events in a space-like relationship. The spectator's opposite implication is equally fallacious for the same reason.

At lower speed (e.g. $v=0.3 c$), the two events have a time-like relationship: $(\Delta s)^{2}<0$, implying that the two events are consistently time-ordered in all frames. Event 2 happens before event 1. The skater and the spectator agree that the passage is safe.

The question regarding safety can only be answered for events with a timelike relationship.

Modified scenario:

Consider the case with blades of proper length $\ell_{0}=10 \mathrm{in}$ and a gap of proper length $d_{0}=15 \mathrm{in}$. In this case, trouble is obvious to skater and spectator at low speed. However, at high speed $(v=0.8 c)$, the skater again feels safe.

The spacetime distance between the two events is space-like at high speed and time-like at low speed as in the original scenario.

