Bessel Functions [lam18]

Solutions of partial differential equations for problems with cylindrical symmetry are often expressible as Bessel functions.

Bessel equation: $x^2 R''(x) + x R'(x) + (x^2 - \nu^2) R(x) = 0.$

Bessel functions of the first kind: $J_{\nu}(x) = \sum_{s=0}^{\infty} \frac{(-1)^s}{s!\Gamma(s+\nu+1)} \left(\frac{x}{2}\right)^{2s+\nu}$. For noninteger ν , the function $J_{\nu}(x)$ and $J_{-\nu}(x)$ are linearly independent. Their linear dependence for integer ν is manifest in the relation,¹

$$J_{-\nu}(x) = (-1)^{\nu} J_{\nu}(x) \quad : \ \nu \in \mathbb{Z}.$$

A solution which remains linearly independent of $J_{\nu}(x)$ is the Neumann function (Bessel function of the second kind) constructed as follows:

The divergence at x = 0 is logarithmic in nature.

¹This relation emerges on account of the fact that the function $\Gamma(x)$ diverges for nonpositive integers.

Modified Bessel functions:

A change of sign in the parameter ν^2 of the Bessel equation produces solutions with quite different properties.

Modified Bessel equation: $x^2 R''(x) + x R'(x) - (x^2 + \nu^2) R(x) = 0.$

Modified Bessel function of the first kind: $I_{\nu}(x) = \sum_{s=0}^{\infty} \frac{1}{s!\Gamma(s+\nu+1)} \left(\frac{x}{2}\right)^{2s+\nu}$.

For noninteger ν , the functions $I_{\nu}(x)$ and $I_{-\nu}(x)$ are again linearly independent, whereas for integer ν we have,

$$\mathbf{I}_{-\nu}(x) = \mathbf{I}_{\nu}(x) \quad : \ \nu \in \mathbb{Z}.$$

A solution which remains linearly independent of $I_{\nu}(x)$ for integer ν is the MacDonald function (modified Bessel function of the second kind:

$$\mathbf{K}_{\nu}(x) \doteq \frac{\pi}{2} \frac{\mathbf{I}_{-\nu}(x) - \mathbf{J}_{\nu}(x)}{\sin(\nu\pi)}.$$

