Bessel Functions ..

Solutions of partial differential equations for problems with cylindrical sym-
metry are often expressible as Bessel functions.

Bessel equation: x?R”(z) + xR'(z) + (2? — v?)R(z) = 0.
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Bessel functions of the first kind: J,(z) = (—) . For
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noninteger v, the function J,(z) and J_,(z) are linearly independent. Their
linear dependence for integer v is manifest in the relation,’

J o, (x)=(-1)"J,(x) : veLZL.
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A solution which remains linearly independent of J, (x) is the Neumann func-
tion (Bessel function of the second kind) constructed as follows:
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The divergence at z = 0 is logarithmic in nature.

!This relation emerges on account of the fact that the function I'(x) diverges for non-
positive integers.



Modified Bessel functions:

A change of sign in the parameter v of the Bessel equation produces solutions
with quite different properties.

Modified Bessel equation: z2R"(z) + zR/(x) — (2* + v*)R(x) = 0.
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Modified Bessel function of the first kind: I, (z) = — :
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For noninteger v, the functions I,(x) and I_,(z) are again linearly indepen-
dent, whereas for integer v we have,

[L,(x)=1,(z) :vez.

A solution which remains linearly independent of I,(x) for integer v is the
MacDonald function (modified Bessel function of the second kind:
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