Meaning of Orthogonality

Quantities of interest in electromagnetism are sometimes expressed as expansions in terms of orthogonal functions, just as vectors are expressed as components in a specific coordinate system.

3D space has three mutually perpendicular (orthogonal) directions. Orthogonal functions span a space with infinitely many mutually orthogonal directions in a generalized sense.
Consider the vector $\mathbf{a}=a_{x} \hat{\mathbf{i}}+a_{y} \hat{\mathbf{j}}+a_{z} \hat{\mathbf{k}}$. The three directions are encoded in the unit vectors $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$, and their mutual orthogonality by the dot products $\hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{k}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{i}}=0$. The normalization of the unit vectors is also encoded in dot products: $\hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=1$.

The components of the vector a can be determined by projecting it onto the axes of the three mutually orthogonal directions. This geometric operation is encoded algebraically in the dot products, $a_{x}=\mathbf{a} \cdot \hat{\mathbf{i}}, a_{y}=\mathbf{a} \cdot \hat{\mathbf{j}}, a_{z}=\mathbf{a} \cdot \hat{\mathbf{k}}$.

Now consider a function $f(x)$ expressed as a linear combination (orthogonal expansion) of a set of orthogonal functions $\psi_{m}(x)$, which are mutually orthogonal and normalized in a generalized sense.

$$
\begin{aligned}
& \triangleright \text { Set of (real) orthogonal functions: } \psi_{m}(x), \quad m=1,2, \ldots \\
& \triangleright \text { Range of variable: } x_{\min } \leq x \leq x_{\max } . \\
& \triangleright \text { Weight function (specific to the set): } w(x) . \\
& \triangleright \text { Mutual orthogonality: } \int_{x_{\min }}^{x_{\max }} d x w(x) \psi_{m}(x) \psi_{m^{\prime}}(x)=0 \quad: m \neq m^{\prime} . \\
& \triangleright \text { Normalization: } \int_{x_{\min }}^{x_{\max }} d x w(x) \psi_{m}(x) \psi_{m}(x)=1 . \\
& \triangleright \text { Orthogonal expansion: } f(x)=\sum_{n} a_{n} \psi_{n}(x) . \\
& \triangleright \text { Expansion coefficient: } a_{m}=\int_{x_{\min }}^{x_{\max }} d x w(x) \psi_{m}(x) f(x) .
\end{aligned}
$$

The last item is obtained by multiplying both sides of the previous item with $w(x) \psi_{m}(x)$ followed by integration.

$$
\int_{x_{\min }}^{x_{\max }} d x w(x) \psi_{m}(x)=\sum_{n} a_{n} \int_{x_{\min }}^{x_{\max }} d x w(x) \psi_{m}(x) \psi_{n}(x)=\sum_{n} a_{n} \delta_{n m}=a_{m}
$$

This step is akin to the projection of a vector onto a coordinate axis as described above.

This scheme is readily to generalized to complex functions as are often employed in orthogonal expansions.

Note of caution: Convergence of such expansions is not, in general, guaranteed. Convergence theorems do exist.

