Laplace Equation in Cylindrical Coordinates

In generalization to the analysis presented in $[\ln 7]$, we consider here a case which does not assume translational symmetry along the cylindrical axis.

Laplace equation: $\nabla^{2} \Phi(r, \phi, z)=0$.

$$
\Rightarrow \frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \phi^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}=0 .
$$

Product ansatz: $\Phi(r, \phi, z)=R(r) Q(\phi) Z(z)$.
Substitution: $Q Z\left[\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}\right]+\frac{R Z}{r^{2}} \frac{d^{2} Q}{d \phi^{2}}+R Q \frac{d^{2} Z}{d z^{2}}=0$.
Isolate variable $\phi: \frac{r^{2}}{R}\left[\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}\right]+\frac{r^{2}}{Z} \frac{d^{2} Z}{d z^{2}}+\frac{1}{Q} \frac{d^{2} Q}{d \phi^{2}}=0$.
Separation constant for $Q(\phi):-\nu^{2}$.
Solution: $\frac{d^{2} Q}{d \phi^{2}}=-\nu^{2} Q \quad \Rightarrow \quad Q(\phi)=a e^{\imath \nu \phi}+b e^{-\imath \nu \phi}$.
For azimuthally periodic solutions we have $\nu \in \mathbb{Z}$.
Isolate variable $z: \frac{1}{R}\left[\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}\right]-\frac{\nu^{2}}{r^{2}}+\frac{1}{Z} \frac{d^{2} Z}{d z^{2}}=0$.
Separation constant for $Z(z): k^{2}$ or $-\kappa^{2}$ with $k, \kappa \in \mathbb{R}$.
Solution \#1: $\frac{d^{2} Z}{d z^{2}}=k^{2} Z \quad \Rightarrow \quad Z(z)=c e^{k z}+d e^{-k z}$.
Solution \#2: $\frac{d^{2} Z}{d z^{2}}=-\kappa^{2} Z \quad \Rightarrow Z(z)=c e^{\imath \kappa z}+d e^{-\imath \kappa z}$.
Boundary conditions associated with variable z determine which solution is physically relevant.

ODEs for variable r for case $\# 1$ (left) and case \#2 (right):

$$
\frac{1}{R}\left[\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}\right]+\left(k^{2}-\frac{\nu^{2}}{r^{2}}\right)=0, \quad \frac{1}{R}\left[\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}\right]-\left(\kappa^{2}+\frac{\nu^{2}}{r^{2}}\right)=0
$$

Bessel equation (left) for $x=k r$ and modified Bessel eq. (right) for $x=\kappa r$:
$x^{2} R^{\prime \prime}(x)+x R^{\prime}(x)+\left(x^{2}-\nu^{2}\right) R(x)=0, \quad x^{2} R^{\prime \prime}(x)+x R^{\prime}(x)-\left(x^{2}+\nu^{2}\right) R(x)=0$.
Solutions of the Bessel equation can be constructed from the following powerseries with coefficients a_{s} determined recursively:

$$
R_{ \pm}(x)=x^{ \pm \nu} \sum_{s=0}^{\infty} a_{s} x^{s}
$$

This leads to Bessel functions of the first kind [lln8]:

$$
\mathrm{J}_{\nu}(x)=\sum_{s=0}^{\infty} \frac{(-1)^{s}}{s!\Gamma(s+\nu+1)}\left(\frac{x}{2}\right)^{2 s+\nu}
$$

For noninteger ν, the functions $\mathrm{J}_{\nu}(x)$ and $\mathrm{J}_{-\nu}(x)$ are linearly independent. Their linear dependence for integer ν is manifest in the relation,

$$
\mathrm{J}_{-\nu}(x)=(-1)^{\nu} \mathrm{J}_{\nu}(x) \quad: \nu \in \mathbb{Z}
$$

A solution which remains linearly independent of $\mathrm{J}_{\nu}(x)$ is the Neumann function (Bessel function of the second kind) constructed as follows:

$$
\mathrm{N}_{\nu}(x) \doteq \frac{\mathrm{J}_{\nu}(x) \cos (\nu \pi)-\mathrm{J}_{-\nu}(x)}{\sin (\nu \pi)}
$$

Solutions of the modified Bessel equation can be constructed analogously in the form of modifed Bessel functions [lln8],

$$
\mathrm{I}_{\nu}(x)=\sum_{s=0}^{\infty} \frac{1}{s!\Gamma(s+\nu+1)}\left(\frac{x}{2}\right)^{2 s+\nu} .
$$

For noninteger ν, the functions $\mathrm{I}_{\nu}(x)$ and $\mathrm{I}_{-\nu}(x)$ are again linearly independent, whereas for integer ν we have,

$$
\mathrm{I}_{-\nu}(x)=\mathrm{I}_{\nu}(x) \quad: \quad \nu \in \mathbb{Z}
$$

A solution which remains linearly independent of $\mathrm{I}_{\nu}(x)$ is

$$
\mathrm{K}_{\nu}(x) \doteq \frac{\pi}{2} \frac{\mathrm{I}_{-\nu}(x)-\mathrm{J}_{\nu}(x)}{\sin (\nu \pi)}
$$

