
Laplace Equation in Cylindrical Coordinates [lam14]

In generalization to the analysis presented in [lln7], we consider here a case
which does not assume translational symmetry along the cylindrical axis.

Laplace equation: ∇2Φ(r, φ, z) = 0.
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Product ansatz: Φ(r, φ, z) = R(r)Q(φ)Z(z).
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Separation constant for Q(φ): −ν2.

Solution:
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= −ν2Q ⇒ Q(φ) = aeıνφ + be−ıνφ.

For azimuthally periodic solutions we have ν ∈ Z.
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Separation constant for Z(z): k2 or −κ2 with k, κ ∈ R.

Solution #1:
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= k2Z ⇒ Z(z) = cekz + de−kz.

Solution #2:
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= −κ2Z ⇒ Z(z) = ceıκz + de−ıκz.

Boundary conditions associated with variable z determine which solution is
physically relevant.

ODEs for variable r for case #1 (left) and case #2 (right):
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Bessel equation (left) for x = kr and modified Bessel eq. (right) for x = κr:

x2R′′(x)+xR′(x)+(x2−ν2)R(x) = 0, x2R′′(x)+xR′(x)−(x2+ν2)R(x) = 0.

Solutions of the Bessel equation can be constructed from the following power-
series with coefficients as determined recursively:
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This leads to Bessel functions of the first kind [lln8]:
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For noninteger ν, the functions Jν(x) and J−ν(x) are linearly independent.
Their linear dependence for integer ν is manifest in the relation,

J−ν(x) = (−1)νJν(x) : ν ∈ Z.

A solution which remains linearly independent of Jν(x) is the Neumann func-
tion (Bessel function of the second kind) constructed as follows:
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Solutions of the modified Bessel equation can be constructed analogously in
the form of modifed Bessel functions [lln8],
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For noninteger ν, the functions Iν(x) and I−ν(x) are again linearly indepen-
dent, whereas for integer ν we have,

I−ν(x) = Iν(x) : ν ∈ Z.

A solution which remains linearly independent of Iν(x) is

Kν(x)
.
=
π

2

I−ν(x)− Jν(x)

sin(νπ)
.
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