Density Operator ${ }_{\text {[aml }]}$

The most general specification of quantum states employs density operators. They are equally useful for pure states and mixed states.

Pure states:

Pure quantum states expanded in an orthonormal basis have equivalent representations as a state vector or as a density operator:

- State vector: $|\psi\rangle=\sum_{n} c_{n}|n\rangle$.
- Expansion coefficients: $c_{n}=\langle n \mid \psi\rangle$.
- Normalization: $\langle\psi \mid \psi\rangle=\sum_{n} c_{n}^{*} c_{n}=\sum_{n}\left|c_{n}\right|^{2}=1$.
- Density operator: $\rho=|\psi\rangle\langle\psi|=\sum_{n m} \rho_{n m}|n\rangle\langle m|$.
- Matrix elements: $\rho_{n m}=\langle n| \rho|m\rangle=\langle n \mid \psi\rangle\langle\psi \mid m\rangle=c_{n} c_{m}^{*}=\rho_{m n}^{*}$,
populations: $\rho_{n n}$ (diagonal),
coherences: $\rho_{n m}=r_{n} r_{m} e^{\imath\left(\varphi_{n}-\varphi_{m}\right)} \quad$ (off-diagonal).
- Trace: $\operatorname{Tr}[\rho]=\sum_{n} \rho_{n n}=\sum_{n}\left|c_{n}\right|^{2}=1$.
- Diagonal and off-diagonal matrix elements:

$$
\rho_{n m} \rho_{m n}=\left|\rho_{m n}\right|^{2}=c_{n} c_{m}^{*} c_{m} c_{n}^{*}=\left|c_{n}\right|^{2}\left|c_{m}\right|^{2}=\rho_{n n} \rho_{m m} .
$$

- Idempotency: ${ }^{1} \rho^{2}=|\psi\rangle\langle\psi \mid \psi\rangle\langle\psi|=|\psi\rangle\langle\psi|=\rho$.

Mixed states:

Mixed quantum states are not expressible as state vectors. Density operators are no longer projection operators, now specified by a set of state vectors, $\{|\psi\rangle\}$, which are normalized but not necessarily orthogonal.

- State vectors in the mix: $|\psi\rangle=\sum_{n} c_{n}^{\psi}|n\rangle, \quad\langle\psi \mid \psi\rangle=1, \quad \sum_{n}\left|c_{n}^{\psi}\right|^{2}=1$.
- Probabilities of state vectors: $P_{\psi}, \quad 0 \leq P_{\psi} \leq 1, \quad \sum_{\psi} P_{\psi}=1$.

[^0]- Density operator:

$$
\rho=\sum_{\psi} P_{\psi}|\psi\rangle\langle\psi|=\sum_{\psi} \sum_{n m} P_{\psi} c_{n}^{\psi} c_{m}^{\psi *}|n\rangle\langle m|=\sum_{n m} \rho_{n m}|n\rangle\langle m| .
$$

- Matrix elements: $\rho_{n m}=\sum_{\psi} P_{\psi} \rho_{n m}^{\psi}, \quad \rho_{n m}^{\psi}=c_{n}^{\psi} c_{m}^{\psi *}$.
- Trace: $\operatorname{Tr}[\rho]=\sum_{n} \rho_{n n}=\sum_{\psi} P_{\psi} \sum_{n}\left|c_{n}^{\psi}\right|^{2}=1$.
- Diagonal and off-diagonal matrix elements:

$$
\begin{aligned}
\rho_{n m} \rho_{m n} & =\sum_{\psi} \sum_{\psi^{\prime}} P_{\psi} P_{\psi^{\prime}} c_{n}^{\psi} c_{m}^{\psi *} c_{m}^{\psi^{\prime}} c_{n}^{\psi^{\prime} *} \\
& \neq \rho_{n n} \rho_{m m}=\sum_{\psi} \sum_{\psi^{\prime}} P_{\psi} P_{\psi^{\prime}}\left|c_{n}^{\psi}\right|^{2}\left|c_{m}^{\psi^{\prime}}\right|^{2} .
\end{aligned}
$$

Expectation values:

Expectation value of observable A (Hermitian operator):

$$
\langle A\rangle=\operatorname{Tr}[\rho A]=\sum_{n m} \rho_{n m} A_{m n}
$$

The sum over m represents a matrix multiplication for the diagonal elements of the product matrix. The sum over n performs the trace.

Expectation value for a pure quantum state:

$$
\langle A\rangle=\sum_{n m} \rho_{n m} A_{m n}=\sum_{n m} \rho_{n m}\langle m| A|n\rangle=\sum_{n m} c_{m}^{*} c_{n}\langle m| A|n\rangle=\langle\psi| A|\psi\rangle .
$$

Expectation value for a mixed quantum state:

$$
\begin{aligned}
\langle A\rangle=\sum_{n m} \rho_{n m} A_{m n} & =\sum_{\psi} \sum_{n m} P_{\psi} \rho_{n m}^{\psi} A_{m n} \\
& =\sum_{\psi} \sum_{n m} P_{\psi} c_{m}^{\psi *} c_{n}^{\psi}\langle m| A|n\rangle=\sum_{\psi} P_{\psi}\langle\psi| A|\psi\rangle .
\end{aligned}
$$

Interacting subsystems:

Basis vectors: $\left|n_{a}, n_{b}\right\rangle=\left|n_{a}\right\rangle \otimes\left|n_{b}\right\rangle \quad$ (tensor product).
Expectation values (in general):

$$
\begin{aligned}
\langle\mathcal{O}\rangle=\operatorname{Tr}[\rho \mathcal{O}] & =\sum_{n_{a}, n_{b}}\left\langle n_{a}, n_{b}\right| \rho \mathcal{O}\left|n_{a} n_{b}\right\rangle \\
& =\sum_{m_{a}, m_{b}} \sum_{n_{a}, n_{b}}\left\langle n_{a}, n_{b}\right| \rho\left|m_{a}, m_{b}\right\rangle\left\langle m_{a}, m_{b}\right| \mathcal{O}\left|n_{a}, n_{b}\right\rangle
\end{aligned}
$$

The first sum calculates the diagonal element of a matrix product, the second sum evaluates the trace.

Density operator: $\rho=\sum_{n_{a}, n_{b}} \sum_{m_{a}, m_{b}}\left|n_{a}, n_{b}\right\rangle \rho_{n_{a}, n_{b} ; m_{a}, m_{b}}\left\langle m_{a}, m_{b}\right|$.
Consider an operator \mathcal{A} which acts in subspace a only:
Matrix element: $\left\langle m_{a}, m_{b}\right| \mathcal{A}\left|n_{a}, n_{b}\right\rangle=\left\langle m_{a}\right| \mathcal{A}\left|n_{a}\right\rangle\left\langle m_{b} \mid n_{b}\right\rangle=\left\langle m_{a}\right| \mathcal{A}\left|n_{a}\right\rangle \delta_{m_{b}, n_{b}}$.
Reduced density operator (with action in subspace a):

$$
\rho_{a} \doteq \sum_{n_{b}}\left\langle n_{b}\right| \rho\left|n_{b}\right\rangle=\operatorname{Tr}_{b}[\rho]=\sum_{m_{a}, m_{b}} \sum_{n_{b}}\left|n_{a}\right\rangle \rho_{n_{a}, n_{b} ; m_{a}, n_{b}}\left\langle m_{a}\right| .
$$

Expectation value of operator \mathcal{A} :

$$
\begin{aligned}
\langle\mathcal{A}\rangle \doteq \operatorname{Tr}[\rho \mathcal{A}] & =\sum_{m_{a}, m_{b}} \sum_{n_{a}, n_{b}}\left\langle n_{a}, n_{b}\right| \rho\left|m_{a}, m_{b}\right\rangle \underbrace{\left\langle m_{a}, m_{b}\right| \mathcal{A}\left|n_{a}, n_{b}\right\rangle}_{\left\langle m_{a}\right| \mathcal{A}\left|n_{a}\right\rangle \delta_{m_{b}, n_{b}}} \\
& =\sum_{m_{a}} \sum_{n_{a}, n_{b}}\left\langle n_{a}, n_{b}\right| \rho\left|m_{a}, n_{b}\right\rangle\left\langle m_{a}\right| \mathcal{A}\left|n_{a}\right\rangle \\
& =\sum_{m_{a}} \sum_{n_{a}}\left\langle n_{a}\right| \rho_{a}\left|m_{a}\right\rangle\left\langle m_{a}\right| \mathcal{A}\left|n_{a}\right\rangle=\operatorname{Tr}_{a}\left[\rho_{a} \mathcal{A}\right] .
\end{aligned}
$$

Entanglement:

We have learned that density operators are projection operators only for pure quantum states. Next we show that reduced density operators of pure quantum states are not, in general, projection operators.

Pure quantum system in combined subsystems a and $b:|\Phi\rangle$.
Density operator in full system: $\rho=|\Phi\rangle\langle\Phi|$.
Reduced density operator generally represents a mixed state in subsystem a :

$$
\rho_{a}=\sum_{n_{b}}\left\langle n_{b} \mid \Phi\right\rangle\left\langle\Phi \mid n_{b}\right\rangle=\sum_{n_{b}} P_{n_{b}}\left|\alpha_{n_{b}}\right\rangle\left\langle\alpha_{n_{b}}\right| .
$$

Associated probability distribution: $P_{n_{b}}=\sum_{n_{a}}\left|\left\langle n_{a}, n_{b} \mid \Phi\right\rangle\right|^{2} \doteq\left|\left\langle n_{b} \mid \Phi\right\rangle\right|^{2}$.
Vectors of mixed state: $\left|\alpha_{n_{b}}\right\rangle=\frac{1}{\sqrt{P_{n_{b}}}} \sum_{n_{a}}\left\langle n_{a}, n_{b} \mid \Phi\right\rangle\left|n_{a}\right\rangle \doteq \frac{1}{\sqrt{P_{n_{b}}}}\left\langle n_{b} \mid \Phi\right\rangle$.
Special case of a pure product state: $|\Phi\rangle \doteq\left|\psi_{a}\right\rangle \otimes\left|\psi_{b}\right\rangle$.
Reduced density operator remains a pure state:

$$
\rho_{a}=\sum_{n_{b}}\left\langle n_{b} \mid \psi_{b}\right\rangle\left\langle\psi_{b} \mid n_{b}\right\rangle\left|\psi_{a}\right\rangle\left\langle\psi_{a}\right|=\left|\psi_{a}\right\rangle\left\langle\psi_{a}\right| \underbrace{\sum_{n_{b}} P_{n_{b}}}_{1} .
$$

A state $|\Phi\rangle$ which produces more than one nonzero $P_{n_{b}}$ is entangled.

[^0]: ${ }^{1}$ General attribute of projection operators.

