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Quantum size effect in conductivity of multilayer metal films
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Conductivity of quantized multilayer metal films is analyzed with an emphasis on scattering by rough
interlayer interfaces. Three different types of quantum size effect~QSE! in conductivity are predicted. Two of
these QSE’s are similar to those in films with scattering by rough walls. The third type of QSE is unique and
is observed only for certain positions of the interface. The corresponding peaks in conductivity are very narrow
and high with a finite cutoff which is due only to some other scattering mechanism or the smearing of the
interface. There are two classes of these geometric resonances. Some of the resonance positions of the interface
are universal and do not depend on the strength of the interface potential while the others are sensitive to this
potential. This geometric QSE gradually disappears with an increase in the width of the interlayer potential
barrier.
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I. INTRODUCTION

Boundary scattering is essential for a complete desc
tion of nanosystems such as quantum wells, ultrathin film
wires, etc. Due to the large surface-to-volume ratio, bou
aries are expected to play a much greater role in determi
the overall properties in a nanostructure than in a bulk m
terial. For example, recent scanning tunneling microsc
~STM! data have shown that electron energy spectra ca
more strongly correlated to the buried interfacial lattices th
to the surface immediately beneath the STM tip.1 These ob-
servations clearly indicate that a small lateral variation alo
the boundary can have a significant long-range effect i
semiballistic electron system. Thus, a more realistic desc
tion of a nanoscale-quantized system must go beyond
common perfect geometric boundary and include bound
corrugations. Indeed, random surface roughness of a
metal film can dominate incoherent scattering and relaxat
and can lead to an anomalous quantum size effect suc
large oscillatory dependence of the in-plane conductivity
the film thickness.2

The same must be true not only for the quantum w
~film! walls but also for the interlayer interfaces in multilay
films. It is well known that the roughness of the interlay
interfaces plays an important role in, for example, gia
magnetoresistance~see the review in Ref. 3 and referenc
therein!. The purpose of this paper is to analyze the effec
irregular corrugation of the interlayer interfaces on the late
conductivity of quantized multilayer films without magnet
effects. We will see that the interface scattering can resu
unique features of the quantum size effect~QSE! which are
strikingly different from the QSE with scattering by bulk o
wall inhomogeneities. Orbital and spin magnetic effects
the type studied in Ref. 4 will be studied separately.

In ultrathin films, the motion of electrons across the film
can be quantized. QSE in metal films is studied experim
tally by measuring conductivity5,6 and susceptibility7 of the
films or in spectroscopy8 and STM ~Ref. 1! measurements
~for earlier results, see references therein!. As a result of the
QSE, the three-dimensional~3D! electron spectrume(p)
splits into a set of minibandse j (q) whereq is the 2D mo-
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mentum along the film (yz plane!. In the simplest case of a
single-layer film approximated by a rectangular quant
well, the quantized values of thex component of momentum
are pxj

5p j /L ~here and below\51!. If in such quantized

metal films the Fermi energyEF is unaffected by the quan
tization, the Fermi surface reduces to a set of 2D cur
eF j (q) that correspond to cross sections of the 3D Fe
surface e(p)5EF by a set of planespxj

5p j /L, eF j (q)

5eF(pxj
,q).

This quantization of motion, which is determined by th
film thicknessL, leads to several types of QSE. First, a
change of the film thicknessL results in a change in the siz
and number of the Fermi curveseF j (q). This thickness-
driven change in number of the Fermi curveseF j (q) @or,
what is the same, number of occupied minibandse j (q)]
leads to a singularity in the density of states. These sin
larities are the most obvious manifestations of QSE.

These singularities in the density of states, by themsel
do not lead to anystriking anomalies in the dependence
the lateral conductivitys of the film on the thicknessL. The
conductivity is more sensitive to electron scattering than
the density of states. However, the change in the numbe
occupied minibandsS can be accompanied by a change
the number of allowed scattering channels that correspon
the scattering-driven electron transitions between miniba
e j (q). The effect of this steplike change in the number
scattering channels on the conductivity is much stronger t
that of the singularities in the density of states.9 When all
scattering-driven interband transitions are allowed, the Q
manifests itself as a pronounced sawlike dependence of
conductivity on the film thickness. This type of QSE in qua
tized films has been predicted both for scattering by impu
ties and surface inhomogeneities.10,11

When the main scattering mechanism is the scattering
surface inhomogeneities, many of the interband transiti
can often be suppressed. This happens, for example, w
the average size of the surface inhomogeneities,R, is much
larger than the the thickness of the film and/or the parti
wavelength,lF . Then the usual QSE, which is describe
above, disappears and is replaced by a different kind of
©2003 The American Physical Society11-1



i
o
i

a
k-

in
he

t
ib
in
ke
th

ple
o

on
ar
o
Th
ec
s

s

om

es
io

r-
th
re
io

th
e
m

be

er
ol-
is
h
th

ug
a
th

in-
at

yer,

ity
es

th

rent
ec-

ated

me
he

is

ers

-
ces-

n
ric

.
ig-

-
ble
op-

to

b-
st

-
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size effect.2 This anomalous QSE, which is somewhat rem
niscent of the magnetic breakthrough, is completely dec
pled from the singularities in the density of states and
associated solely with opening of interband scattering ch
nels for gliding electrons at certain values of the film thic
ness,Li.A( i 11/2)RlF/2.

The main goal of this paper is to analyze QSE
multilayer films with an emphasis on the scattering by t
interface between the layers. We will see that, in addition
the above two types of QSE, the multilayer films can exh
a peculiar ‘‘geometric’’ QSE with very narrow high peaks
the lateral conductivity. Some of the positions of these spi
in conductivity are universal; these spikes appear when
ratio of the thicknesses of the film layers is given by sim
fractions. The position of the rest of the spikes depends
the strength of the interlayer interface.

In the next section, we briefly present the main equati
for the conductivity and introduce proper dimensionless v
ables. The results are presented in Sec. III. Section IV c
tains the summary and a brief discussion of the results.
Appendix contains auxiliary information on the energy sp
trum of multilayer films of the type used in the calculation

II. CONDUCTIVITY

A. Scattering by the interlayer interface

For simplicity, we consider an ultrathin film of thicknes
L consisting of only two layers with the thickness ofL1 and
L2. The interface between the layers is rough with rand
corrugation. The exact position of the interface,x5L1
1j(y,z), is described by the random functionj(y,z) with
zero averagêj&50. The random interface inhomogeneiti
j(y,z) are best characterized by the correlation funct
z(s),

z~s![z~ usu!5^j~s1!j~s11s!&[A21E j~s1!j~s11s!ds1 ,

~1!

where the vectors gives the 2D coordinates along the inte
face andA is the averaging area. Here, it is assumed that
correlation properties of the surface do not depend on di
tion. Two main characteristics of the surface correlat
functions z are the average amplitude~‘‘height’’ ! and the
correlation radius~‘‘size’’ ! of surface inhomogeneities,, and
R.

To emphasize the scattering by inhomogeneities of
interlayer interface, we start from films with ideal outsid
walls that do not contribute to electron scattering. The co
bined effect of interface and wall inhomogeneities will
considered elsewhere.

Mostly we are interested in the dependence of the lat
conductivity on the film thickness and have in mind the f
lowing experimental situation. The first layer of the film
grown on some~ideal! substrate. The surface is then roug
ened by adding inhomogeneous adsorbate or by some o
means. The growth of the second layer starts from this ro
interface, and the conductivity is measured at different v
ues ofL2 either in the process of growth or after the grow
16541
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is completed. An advantage of such setup with a buried
terface is that it allows one to measure the conductivity
various values of the film thickness withexactly the same
random rough interface.

In this setup, the thickness of the first layer,L1, should be
considered as fixed, while the thickness of the second la
L2, is variable. Below we calculate the film conductivitys
as a function of the film thickness,L5L11L2 , s(L), as-
suming thatL15const. The measurements of conductiv
can be performed in stationary conditions at different valu
of L2 or as a function of time, in the process of film grow
as in Ref. 12.

The second layer can be made of the same or diffe
material as the first. If the material is different, then the el
tron potential energy between the layers differs by someDU.
The structure of the energy spectrum becomes a complic
function ofDU, making the behavior of conductivity highly
irregular.13

Below we consider both layers to be made of the sa
material with the interface being the only disruption in t
potential relief. Then the simplest model of the interface
the d-functional potential barrier

U5U0d„x2L12j~y,z!…. ~2!

This immediately introduces two new physical paramet
into the problem: the strength of the barrierU0 and its~av-
erage! position L1. In what follows, we study the depen
dence of the conductivity on these parameters. When ne
sary, instead of thed function we will study the corrugated
interface with finite widthD. In experiment, the barrier ca
be a dislocation wall, twin boundary, or an oxide or dielect
layer ~see, e.g., Ref. 14 and references therein!.

The presence of the interface~2! changes the spectrum
When calculating the changes in the spectrum, one can
nore small corrugationj(y,z). The changes in spectrum
caused by thed-type barrier~2! are discussed in the Appen
dix. The random corrugation of the interface is responsi
for the electron scattering and gives rise to the collision
erator in the transport equation.

The scattering by the interface inhomogeneities leads
the transitions between the statese i(q)→e j (q8). Several
ways of calculating the corrugation-driven transition pro
abilities Wi j (q,q8) are described in Ref. 13. The simple
methods are either the direct perturbation approach15 or the
mapping transformation method,16 both giving the same re
sult in most of the parameter range.

The corrugation-driven contributiondU to the interface
potential, Eq.~2!, with small corrugationj is

dU52U0j~y,z!d8~x2L1!. ~3!

The matrix elementVi j (q,q8) of this perturbation between
the statese j (q),e j (q8) is
1-2
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QUANTUM SIZE EFFECT IN CONDUCTIVITY OF . . . PHYSICAL REVIEW B 67, 165411 ~2003!
Vi j 52U0E exp@ is•~qÀq8!#j~s!C i~x!d8~x2L1!

3C j~x!dxds

5U0j~qÀq8!@C i~L1!C j8~L1!1C i8~L1!C j~L1!#,

~4!

whereC i(x) are the quantized wave functions for electr
motion across the film. Note that the derivativesC8(x) for
films with a d-type barrier inside are discontinuous at t
position of the barrier,x5L1. Therefore,C i8(L1) in Eq. ~4!
should be understood asC i8(L1)5@C i8(L110)1C i8(L1

20)#/2.
The corrugation-driven transition probabilityWi j (q,q8) is

given by the square of this matrix element which should
averaged over the random inhomogeneitiesj:

Wi j ~q,q8!5^uVi j ~q,q8!u2&j5U0
2z~ uqiÀqj8u!Gi j , ~5!

Gi j 5@C i~L1!C j8~L1!1C i8~L1!C j~L1!#2, ~6!

where z(uqiÀqj8u) is the Fourier image of the correlatio
function of the interface inhomogeneities~1!. The coeffi-
cientsGik are calculated with the help of the wave functio
presented in the Appendix. The explicit form ofGik is given
in the next subsection.

The transport equation is a set of equations for the e
tron distribution functionsni(q) in minibandse i and has the
standard Boltzmann-Waldmann-Snider form13

dni

dt
52p(

j
E Wi j @nj2ni #d~e iq2e j q8!

d2q8

~2p!2
. ~7!

The integration overdq8 is done using thed function
d(e iq2e j q8)5mi j* d(q82qi j )/qi j , whereqi j (q) is the solu-
tion of the equatione j (qi j )5e i(q) and the effective masse
mi j* 5qi j /(]e j /]q)uq5qi j

. As always in the transport theory
the angular integration is eliminated by using the angu
harmonics. The current is given by the first harmonic of
distributionni

(1)[n i the equation for which involves only th
zeroth and first harmonicsWi j

(0,1)(q,qi j ) of W(qÀqi j ) over

the angleqq̂j j 8 ,

dn i~q!/dt52(
j

n j~qi j !/t i j ,

1

t i j
5

m

2 (
k

@d i j Wik
(0)2d jkWi j

(1)#,

Wi j
(0,1)5U0

2z (0,1)~qi2qj !Gi j , ~8!

where, to simplify the equations, we assume that the ef
tive massmi j* does not depend on its indices,m5mi j* .

The solution of Eqs.~8! provides the 2D conductivity o
the film:
16541
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n i~qi !qi . ~9!

B. Dimensionless variables

The problem involves several length scales: parti
Fermi wavelengthlF5p/pF ; the thickness of the layers,L1
and L2 (L11L25L); the correlation radius of the surfac
inhomogeneities,R; and the interface thicknessD. Another
length parameter, the amplitude of inhomogeneities,, is per-
turbative and enters conductivity as a coefficient,

s5
2e2

\

R2

,2
f ~lF ,Li ,R,D !. ~10!

Note that we consider only the contribution from surfa
roughness and disregard the bulk scattering. As a result
conductivity~10! diverges in the limit of vanishing inhomo
geneities ,→0 or R→`. The proper account of bulk
scattering17 eliminates this divergence.

It is convenient to measure all length parameters in u
of the Fermi wavelengthlF5p/pF . Instead of the interface
strengthU0, we use interchangeably two equivalent dime
sionless parametersg andu0,

g5u0L/plF52mU0lFL/p\2 ~11!

(g is convenient for calculation of the spectrum whileu0 is a
proper energy parameter for characterization of the cond
tivity in our setup!. The position of the interface is charac
terized by the parameterd,

d5L2 /L. ~12!

In computations,d changes from 0~no second layer! to 1
~the second layer much wider than the first!. It is worth re-
peating that we are looking at the experimental situat
when the thickness of the first layer is fixed and the cond
tivity is measured as a function of the thickness of the sec
layer ~or the overall film thickness!.

The energy spectrume i(q) is described by dimensionles
energy unitszi ,

e i~q!5
1

2m S p2

L2
zi

21q2D , ~13!

where zi is given by the solution of the 1D Schro¨dinger
equation for a quantum well with ad-type barrier inside~see
the Appendix!:

sinpz1
g

z
sin~pzd!sin@pz~12d!#50. ~14!

Finally, the conductivitys(L) for the experimental setup
which has been described above, will be displayed by
dimensionless functionf L(L/lF),

s~L !5
2e2

\

R2

,2
f L , ~15!

for various values ofR/lF , D/lF , L1 /lF , and the strength
of the barrieru0.

All the figures below present this dimensionless functi
f L . This function is plotted under the assumption that t
1-3
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A. E. MEYEROVICH AND I. V. PONOMAREV PHYSICAL REVIEW B67, 165411 ~2003!
experiment is performed at fixed thickness of the first lay
For uniformity, the figures for weak interfaces are plotted
u050.1 and, for strong interface barriers, foru0510. The
simplest energy spectrum corresponds to thin first lay
lF<L1,2lF . Therefore, for transparency of results, t
majority of the data are presented forL1 /lF51.1 ~for com-
parison, some of the graphs give the conductivity for lar
L1).

The computational results below are presented for
Gaussian correlation function of the interface inhomoge
ities,

z~s!5,2 exp~2s2/2R2!. ~16!

The angular harmonics for this correlator, which enter
transition probabilities in Eq.~8!, are equal to

z (0)~qi ,qj !54p,2R2@e2QQ8I 0~QQ8!#e2(Q2Q8)2/2,

z (1)~qi ,qj !54p,2R2@e2QQ8I 1~QQ8!#e2(Q2Q8)2/2,
~17!

whereQ5qiR, Q85qjR.
Analysis of QSE in Ref. 2 for ultrathin films with scatte

ing by the film walls demonstrated that the results for
types of correlators are qualitatively the same as for
Gaussian one whenR!L. For large inhomogeneitiesR
@L, the results for all types of correlators with exponent
power spectra are similar to those for the Gaussian corre
and are qualitatively different from the power-law corre
tors. The results for the power-law correlators are less in
esting: such films always exhibit the standard sawlike Q
irrespective of the value ofR because of the wider fluctua
tions of the inhomogeneity sizes. Therefore, in this paper
consider only the exponential correlators with a well-defin
size of inhomogeneities.

III. RESULTS

A. Standard quantum size effect

The standard quantum size effect in films manifests its
by a sawlike dependence of the conductivitys on the film
thickness L.10,11 The positions of the singularities—th
sawteeth—correspond to the values of the thickness at w
a new energy minibande j becomes accessible. The amp
tude of the conductivity drop in such a singular point d
pends, in the case of scattering by surface inhomogene
on the effectiveness of the roughness-driven interband t
sitions. If the probability of such transitionsWiÞ j , is small
in comparison to the rate of the intraband scatteringWii , the
singularities in the curvess(L) are almost completely sup
pressed and the standard QSE disappears.9

Analysis of the roughness-driven transition probabilit
for surface scattering in Ref. 2 for different classes of surf
roughness showed that, when the average size of inhom
neities, R, is much smaller than the film thicknessL, the
values of the interband transition probabilitiesWiÞ j are com-
parable to that for the intraband scatteringWii and all scat-
tering channels are equally important. In this case, the cu
s(L) always exhibit the standard QSE. The same should
16541
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true for scattering by the interlayer interfaces. This is illu
trated in Figs. 1 and 2 which shows(L) for a weak and
strong interface potentialsu050.1 andu0510 respectively.
In Fig. 1 the thickness of the first layer isL152.1 andlF , in
Fig. 2, L151.1lF . In both figures, the size of inhomogen
ities is R5lF . Both figures exhibit a well-pronounced saw
like structure. The positions of the singularities for the we
interface are almost equidistant, reflecting the fact the ene
structure is close to that for a square well without pertur
tion inside. The strong interface affects the energy spect
and, therefore, the positions and the shapes of the sawt
However, at very large film thicknessL@L1 the interface is
located very close to the well wall and the spectrum start
recover its unperturbed structure. This manifests itself i
recovery of the equidistant distribution of the singularities
Fig. 2 at largeL. Because of a peculiar dependence of t
transition probabilities on the interface strength~see the Ap-
pendix!, the conductivity grows much faster with increasin
film thickness in the case of the weak interface than for
strong interface.

B. Quantum size effect for large-scale inhomogeneities

The standard QSE of the type described in the previ
subsection disappears in the single-layer film when the c
relation size of inhomogeneities,R, is larger than the film

FIG. 1. Dimensionless conductivity of quantized films, Eq.~15!,
as a function of the film thicknessL. The sawlike dependence i
typical for the standard quantum size effect. The correlation rad
of inhomogeneities,R/lF51; the thickness of the first layer
L1 /lF52.1; the width of the interface,d5D/lF50.01; and the
strength of the barrier,u050.1.

FIG. 2. Standard QSE in conductivity of quantized films, E
~15!, as a function of the film thicknessL for strong interface po-
tential, u0510. The correlation radius of inhomogeneities,R/lF

51; the thickness of the first layer,L1 /lF51.1; and the width of
the interface,d51024.
1-4
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QUANTUM SIZE EFFECT IN CONDUCTIVITY OF . . . PHYSICAL REVIEW B 67, 165411 ~2003!
thickness,R@L, and the correlation function in the momen
tum space,z(q) ~the so-called power spectrum of inhom
geneities!, decays exponentially at large wave numbersq.
Instead, the single-layer films exhibit an anomalous QSE2

The explanation involves the interband transitions.
seems that at largeR the off-diagonalWiÞk are small and the
interband transitions are suppressed. However, at certain
ues of largeL, few of the elementsWiÞk , which are close to
the main diagonal, could become comparable toWii even for
large R. Then the transitionsi↔ i 11 could become notice
able, leading to a drop in conductivity. A simple estimate
the peak positions is the following. Scattering by surfa
inhomogeneities changes the tangential momentum byDq
;p/R. This is sufficient for the interband transition whe
Dq;qi2qi 11. When the number of occupied minibands
large, the lateral Fermi momentum for the gliding electro
i.e., electrons from the miniband with a relatively small i
dex i, qi;pF . For such electrons,qi

22qi 11
2 ;2pDq/lF

;2p2/RlF . On the other hand, the energy conservation l
dictates qi

22qi 11
2 5(2i 11)p2/L2. Accordingly, with in-

creasingL the transition channeli↔ i 11 opens atL2;( i
11/2)RlF . The opening of a new scattering channel in t
points

Li;A~ i 11/2!RlF ~18!

is always accompanied by a drop in conductivity. The fi
such drop occurs for the electrons in the lowest miniba
e1(q) with i 51, i.e., for the grazing electrons. Note th
these particular electrons contribute the most to the cond
tivity. Since the electrons from the lowest miniband are
sponsible for the dominant contribution to the conductivi
the conductivity drops almost by half in the pointL1

;A3RlF/2 whereW12 becomes comparable toW11 and the
effective cross section doubles.~In the quasiclassical film
without bulk scattering, the current, which is an integral ov
momenta, diverges when the component of momentum
pendicular to the film goes to zero, i.e., for the grazing el
trons. Without the bulk scattering, the conductivity is fin
only because of the quantum cutoff atpx5p/L.!

The anticipation was that this type of QSE should ma
fest itself also for the interface scattering in multilayer film
at R@L for exponentially decaying surface correlators. I
deed, such a picture can be observed in Figs. 3 and 4
u050.1, 10, respectively~in both figures,L151.1lF , R
5200lF). The positions of the peaks in Fig. 3 for the we
interface are close to Eq.~18!. In the case of the strong
interface, the shift of the energy levels from those for
‘‘empty’’ square well is much more noticeable and the po
tions of the peaks in Fig. 4 deviate from those given by E
~18!. At large values ofL, the positions of the peak with
strong interface become close to the points in which
thickness of the second layer,L25L2L1, rather than the
overall thicknessL is given by Eq.~18!. The amplitude of the
anomalous QSE oscillations grows with the increas
strength of the interface approaching that for the imp
etrable wall.

Of course, for the inhomogeneities of the intermedi
size, the picture exhibits the features of both standard
16541
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anomalous QSE’s. As has already been mentioned, our
merical examples address the experiment in which the siz
the inhomogeneities,R, is fixed while the thickness of the
film, L, is changing. In general, at the valuesL,R one
should see the smooth anomalous QSE oscillations w
large period, while atL.R one should, on the same curv
see the reappearance of the standard QSE with sharper o
lations with period equal to 1. Roughly, the transitions b
tween the regimes occurs when the distance between
peaks of the anomalous QSE, Eq.~18!, decreases to the valu
(Li 112Li)/lF;1. In principle, the reappearance of th
standard QSE should be seen in Figs. 3 and 4 when
computations are extended to sufficiently largeL. However,
the amplitude of the standard QSE oscillations on th
curves is very small and the reappearance of the oscillat
is barely noticeable on the scale of the curve. It is much m
illustrative to demonstrate the effect at intermediate value
R when both anomalous and standard QSE oscillations h
comparable amplitude. This is shown in Fig. 5 forR/lF
53 and weak interfaceu050.1. On the left side of the grap
one can clearly see smooth ‘‘new’’ oscillations with a rel
tively large period, while on the right side the oscillation
recover the sharp sawlike structure with period equal to

C. Geometric „fractional… quantum size effect

To exhibit the QSE oscillations of the previous subse
tion, Figs. 3 and 4 were plotted not for the exactd-type
interfaces~2! and ~3! but for a somewhat smeared~less
sharp! interface

FIG. 3. Anomalous QSE in conductivity of quantized films, E
~15!, as a function of the film thicknessL. The correlation radius of
inhomogeneities is large,R/lF5200; the thickness of the firs
layer, L1 /lF52.1; the width of the interface,d50.1; and the
strength of the interface barrier,u050.1.

FIG. 4. Same as in Fig. 3, but for a much stronger interfa
barrier,u0510.
1-5
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dU52U0j~y,z!@d8~x2L1!1Dd9~x2L1!#. ~19!

The interface widthD can have two origins. If its origin is
corrugation related, then the interface width is given by
next term of expansion of the interface barrier inj and is
characterized by the same parameters, andR, D2;^j2&. In
this case, depending on the correlation function,D;, or
D;,2/R. On the other hand,D can originate from some
‘‘internal’’ smearing of the interface and can exist even wit
out surface inhomogeneities. In this case,D is a new inde-
pendent small parameter. Note that here we are intereste
the ‘‘smearing’’ of the interface and not in its ‘‘fixed’’ width
so that the average of the square of the matrix element
dU over the interface starts fromD2. In Figs. 3 and 4, the
interface thickness was chosen asd5D/lF50.1.

If the interface is thinner, the character of the curv
changes dramatically. For example, Fig. 6 presents the
ductivity s(L) exactly for the same values of all paramete
as in Fig. 3 except for the interface thickness which is n
d5D/lF50.0001. The difference between the two curves
astonishing.

The conductivity in Fig. 6 exhibits two types of spike
The explanation for first type of spikes is the following. Th
scattering-driven transition probabilitiesWi j , Eq. ~5!, con-
tain the factor with the correlation functionz(qi2qj8) and

FIG. 5. QSE in conductivity of quantized films, Eq.~15!, as a
function of the film thicknessL for the intermediate values of th
size of inhomogeneities,R/lF53. The thickness of the first layer
L1 /lF51.1; the width of the interface,d50.1; and the interface
barrier,u050.1. At smallL, the curve exhibits the smooth oscilla
tions of the anomalous QSE with a large period, while QSE
largeL recovers the standard sawlike shape with period equal t

FIG. 6. Geometric QSE in conductivity of multilayer films. Th
same parameters as in Fig. 3, except for a much sharper inter
d51024. The fractions near the spikes give the values of the re
nance positions of the interfaced5L2 /L.
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the geometric coefficientsGi j , Eq. ~6!. For exponentially
decaying correlators with largeR@L, the off-diagonal val-
ues of the correlation functionz(qi2qj8) with iÞ j are expo-
nentially small in comparison with the diagonal ones,z(qi

2qi8). Then it is sufficient to analyze only the diagonal el
ments of the matrixGi j , Eq. ~6!:

Gii 54C i
2~L1!C i8

2~L1!. ~20!

If, accidentally, thed-type interface is positioned in th
points in which eitherC i(L1)50 or C i8(L1)50, then the
coefficientGii and, therefore, the transition probabilityWii
become zero. This, in turn makes the conductivity of el
trons in the minibande i and, therefore, the overall conduc
tivity almost infinite. The cutoff is determined by one o
three factors:~1! exponentially small interband transition
~2! scattering by other defects such as impurities, inhomo
neities of external walls, etc., and~3! smearing of the inter-
face,~19!, which leads to the averaging ofGii , Eq. ~6! and
~20!, over a finite interval, making it nonzero. In this pape
for obvious reasons, we are interested in the third opti
Note that in the case of scattering by external film wa
instead of the interlayer interface, the coefficientsGi j ; i 2 j 2

are never equal to zero and this type of QSE does not e
The first type of spikes corresponds toC i(L1)50. The

‘‘resonance’’ positions of thed-type interface are universa
and do not depend on the potential strength. This is true
all rational pointsd5L2 /L. Of course, the conductivity o
the film becomes infinite for this position of the interfac
only if the corresponding minibande i is occupied. This
means that the integern in the denominator of the corre
sponding fractiond5m/n should not exceed the number o
the occupied minibands,n<S5Int@L/lF#. Indeed, for
points d5L2 /L5m/n there is a number of wave function
C i(x) of the empty well that have nodes in the pointsx
5L1. Since the unperturbed homogeneous potential bar
has ad-functional formU0d(x2L1), these wave functions
C i(x) remain the eigenfunctions of the wellwith the unper-
turbed barrierU0d(x2L1) inside and retain their nodes i
the pointsx5L1. Then the corresponding diagonal coef
cients Gii are zero, making the diagonal roughness-driv
transition probabilitiesWii for particles from the minibande i
equal to zero as well. Since the off-diagonal transition pro
abilities are exponentially small inR/L@1, the condition
Wii 50 makes the conductivity for particles from the min
band e i , and, therefore, the overall conductivity expone
tially large in R/L@1.

The structure of the corresponding resonance spikes
comes more and more complicated with an increase inL1
when the structure of the minibands and their occupa
become more convoluted. The simplest structure is obse
whenL1 is betweenlF and 2lF as in Fig. 6. In this case, the
observed rational spikes correspond to the rational num
of the formd5(n21)/n and are equidistant with the sep
ration L1 /lF . The first spike corresponds to the film wit
d5L2 /L51/2, the second tod52/3, the third tod53/4, the
fourth to d54/5, and so on. The odd peaks, with the exce
tion of the first one, look wider and consist of bigger a
smaller subpeaks. The smaller subpeaks correspond to

r
1.

ce,
-
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QUANTUM SIZE EFFECT IN CONDUCTIVITY OF . . . PHYSICAL REVIEW B 67, 165411 ~2003!
geometrical resonance withd5(n21)/n which is described
above. The bigger and wider subpeaks have a somewha
ferent nature and are not universal with respect to the ba
strength. These subpeaks will be described later. Note
the peakd53/4 is so close to the first peak from the oth
series that these two peaks are hardly distinguishable.

When L1 becomes bigger, the first few geometric res
nances can be observed at much narrower second layers
before the pointd5L2 /L51/2, while the density of the
resonances becomes higher. For example, Fig. 7 pres
the conductivity as a function of thickness for the film wi
the same parameters as in Fig. 6 except for the thicknes
the first layer which is nowL154lF . Though the overall
distribution of the peaks is now much more complicated,
majority can still be understood as the ones generated by
eigenfunctions of the empty quantum well with the nodes
the positions of the barrier. The complexity of the peak str
ture is explained by the fact that at a wider first layerL1
more minibands are occupied, thus allowing a wider se
tion of the rational numbers that determine the peak positi
d5L2 /L5m/n.

The geometric resonances can coexist with the anoma
QSE of the previous section if the interface is relative
strong as in Fig. 8 for the same configuration as in Fig. 6
with much higher value ofu0 , u0510. For weak interfaces
the geometric resonances suppress the QSE of the pre
subsection which gets restored only for bigger values of

FIG. 7. Geometric QSE in conductivity of multilayer films. Th
same parameters as in Fig. 6, except for a wider first layer,L1/lF

54.0. The fractions near the spikes give the values of the reson
positions of the interfaced5L2 /L.

FIG. 8. Geometric and anomalous QSE in conductivity
multilayer films for strong interface potential,u0510. The rest of
the parameters are the same parameters as in Fig. 6. For e
comparison with Figs. 4 and 6, the inset gives the same dat
logarithmic scale.
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interface thicknessd. This graduate disappearance of t
geometric resonances can be seen when comparing Fig.
u050.1, d51024 with Fig. 9 (d51022) and Fig. 10 (d
51021). Figure 10 presents conductivity for the same co
figuration as Fig. 3 but in logarithmic scale. In this scale, o
can see both the wide QSE oscillations of the previo
subsection and the only surviving geometric resonance
d51/2.

Above we explained only the narrower, universal geom
ric resonances atd5m/n in Figs. 6–9. The second, nonun
versal type of spikes has a similar explanation: zeros ofGii .
According to the Appendix,

Gii 54C i
2~L1!C i8

2~L1!

5
4p2

L4
Ai

4 sin2~pzid!@g sin~pzid!12zi cos~pzid!#2,

~21!

wherezi(g,d) is given by the solution of the 1D Schro¨dinger
equation~14! for a quantum well with ad-type barrier inside.
The explicit form of the coefficientsAi is not important. The
factor sin2(pzid) in Eq. ~21! corresponds toC i

2(L1); its zeros
are responsible for the geometric resonances with ratio
d5(n21)/n. There are no other zeros of sin2(pzid).

However, Eq.~21! also contains the factor in the squa
brackets which corresponds toC i8(L1). The simultaneous
solution of Eq. ~14! for the spectrum, g sin(pzd)
12zcos(pzd)50, and equationC i8(L1)50 yields the fol-
lowing equation for the resonance positions of the interfa

ce

f

sier
in

FIG. 9. Illustration of the effect of smearing of the interface. T
same curve as in Fig. 6, but for a wider interface,d50.01.

FIG. 10. Illustration of the effect of smearing of the interfac
The same curve as in Figs. 6 and 9, but for an even wider interf
d50.1. Data as in Fig. 3, but in logarithmic scale.
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sin@pzi~122d!#50, ~22!

which is equivalent to

zi~g,d!~122d!5k, ~23!

with integerk. First, there is a universal solutiond51/2 at
k50. In this case, when the interface is exactly in the mid
of the film, bothC i(L1) and C i8(L1) are zero~the former
with an even index, the latter with an odd index!. This ex-
plains why the geometric resonance withd51/2 is the most
stable one with respect to the smearing of the interface.

The rest of the resonances withkÞ0 are not universal.
These resonances explain the earlier unaccounted for sp
in Figs. 6–8. Since the spectrumzi(g,d) is a complicated
function of the interface strength and its position, the so
tion of Eq. ~23! for kÞ0 is rather complicated. We will give
the analytic equation for the simplest case oflF<L1,2lF
when Eq.~23! is equivalent to

L

lF
5

2zn

zn2n11

L1

lF
~24!

~the only allowed values ofk are k52n11). For weak
interfacesg/zn!1 this equation can be rewritten as

1

12d
52nF12

n21

n
DnG , Dn'

g

pzn
sin2~pnd!.

~25!

Analysis of Eq.~25! shows that several of the first of suc
resonance positions of the interface are indeed close to
odd rational universal resonances as in Fig. 6,

d.
2l 21

2l
,

and separate from the universal resonances with increa
integer l. The very first resonance atd51/2 is, as is ex-
plained above, exactly the same as the first universal r
nance. The reason why these nonuniversal resonance
wider and stronger than the universal ones described abo
still unclear.

IV. CONCLUSIONS

In summary, we analyzed the QSE in the conductivity
multilayer films when the main scattering mechanism is
scattering of electrons by random inhomogeneities of the
terlayer interface. Three different types of QSE are predic

The first one is a standard QSE with a typical sawl
dependence of the conductivitys on the film thicknessL,
s(L). This effect dominates when the correlation rad
~size! of the interface inhomogeneitiesR is much smaller
than the film thickness,R!L. This effect should be observe
for all types of correlation functions of the interface roug
ness. This effect is easily explained by the singularities in
electron density of states related to the quantization of m
tion across the film.

The second type of QSE is explained not by t
quantization-driven singularities in the density of states,
16541
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by the anomalies in the cross section for scattering by in
face inhomogeneities. This scattering-driven QSE repla
the standard sawlike QSE when the correlation radius~size!
of the interface inhomogeneities is large,R@L. This type of
QSE manifests itself as smooth large-scale oscillations on
dependences(L) and should be observed only when th
Fourier image of the interface correlation function~the so-
called power spectrum of inhomogeneities! decays exponen
tially at large momenta. The main difference of this QS
from a similar effect in scattering by the film walls2 is that
the observation of this effect in multilayer film requires ce
tain smearing of the interface.

The third type of QSE is new and is most unusual. T
effect manifests itself as a set of very narrow and high spi
in s(L) and replaces the scattering-induced QSE descri
above when the interface is narrow. The finite cutoff in t
spikes can be ensured either by some other scattering me
nism or by the smearing of the interface.

The spikes are observed only for certain resonance p
tions of the interface. The number of spikes is determined
the relation between the thickness of the layers and the Fe
wavelength. The resonance positions of the interface are
scribed. These positions can be split into two general clas
Some of these positions are universal and do not depen
the amplitude of the interface potential barrier and cor
spond to the situations when the ratio of the layer widths
given by simple rational fractions. The integer in the denom
nator of such fractions does not exceed the number of oc
pied minibands. The remaining resonance positions of
interface are nonuniversal and depend on the strength o
interface potential. In the case of a weak interface, some
these nonuniversal positions are close to the universal o
giving the impression of a split in the conductivity spikes

A too small width of the resonance spikes can impede
experimental observation of the geometric resonances.
width of the resonance spikes increases and their height
creases with increasing smearing of the interface and
resonance spikes gradually disappear. Note that this di
pearance of the resonance spikes is related not to the wi
ing, but to the random smearing of the interface—the w
ening of the interface, by itself, results just in a shift of t
spike positions. The width of the universal resonances
equal, by the order of magnitude, to the width of the smea
interface D, Eq. ~19!, or, in dimensionless variables,d
5D/lF . The width of nonuniversal resonances is somew
larger and is less sensitive toD; the reason is still unclear
Note that the smearing widthD can be much smaller than th
physical thickness of the interface, which in metals is oft
larger than or of the order of the Fermi wavelengthlF . In
contrast to this, the smearing parameterd5D/lF can be
very small. The most stable spike with respect to smear
corresponds to the layers of equal width. The wide range
possible values ofD, which are determined either by th
roughness withD of the order of, or ,2/R or by the ‘‘in-
ternal’’ smearing of the interface, makes the observation
the geometric resonances possible.

The spikes in the conductivity occur when the scatter
probabilities for electrons in one of the quantized miniban
become exactly zero. Since scattering probabilities for s
1-8
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QUANTUM SIZE EFFECT IN CONDUCTIVITY OF . . . PHYSICAL REVIEW B 67, 165411 ~2003!
tering by different interfaces add up, the spikes in conduc
ity of multilayer films with many layers can be observe
only if the scattering probabilities for electrons from o
miniband become zero simultaneously for scattering by
the interfaces. This can happen only if all the interfaces
located in the universal resonance positions correspondin
the rational fractions from the same series. Otherwise,
scattering by inhomogeneities of the ‘‘non-resonant int
face’’ will curtail the contributions from the resonant one
This imposes a restriction on the number of layers for
observation of this type of QSE for a film of fixed overa
thickness.

We analyzed the multilayer films under the condition th
the disruption in the electron spectrum be caused only by
interface potential while electron potential deep into the l
ers is the same for all layers. One can imagine a differ
physical situation when the electron potential in differe
layers differ from each other as in Ref. 13. In this situati
the resonance spikes in conductivity should be obser
when the position of the interface coincides with one of
nodes in the wave function. It is clear that this occurs at le
for certain values of the interlayer potential differenceDU.

The calculations in the paper are aimed primarily at
experimental setup when the lateral conductivity is measu
as a function of the film thickness at fixed thickness of
first layer ~fixed position of the buried interface!. The main
obstacle for the experimental observation of the predic
effect is a rather small width of the conductivity spikes a
their sensitivity to the position of the interface. On the oth
hand, this sensitivity of the QSE to the position of the int
face may open the door for using this effect for precis
control of the interface positions in multilayer films. Th
may be very useful for better quality ultrathin films witho
short-range surface inhomogeneities.18 Recent experiments
with controlled ultrathin metal films with buried roug
interfaces1 indicate that the existing experimental setups
sufficient for the observation of the predicted quantum s
effect.

Usually, the QSE in the conductivity of semiconduct
films is less pronounced than for metal films. This is e
plained by the smoother distribution of electrons in non
generate semiconductors. In the absence of a sharp dro
the distribution at the Fermi energy, singular features in
conductivity, which is an integral over the particle distrib
tion, tend to be smeared out. However, the universal geom
ric spikes in conductivity, which are described above,
explained by the zeros in quantized electron wave functi
on the interface and have nothing to do with the elect
distribution. Then these spikes in conductivity can be
only striking common feature for the QSE in multilay
metal and semiconductor films. The only obstacle for
observation of such spikes in semiconductors could be a r
tively large screening radius which may lead to an effect
smearing of the interface.
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APPENDIX: ENERGY SPECTRUM
AND MATRIX ELEMENTS

The one-dimensional Schro¨dinger equation for a squar
well with a d-functional barrier inside has the form

c~x!91k2c~x!5u0d~x2a!c~x!, ~A1!

where

k252mE/\2, u052mU0 /\2. ~A2!

The wave functions can be written as

c1[c~x<L1!5A2

L
A sinkx,

c2[c~x>L1!5A2

L
B sink~x2L !. ~A3!

In the dimensionless notation of Sec. II 2, the equation
the spectrum acquires the form

sin~pz!1
g

z
sin~pdz!sin@p~12d!z#50,

d5L2 /L<1, kL5pz, g5u0L/p. ~A4!

The normalized coefficients in the wave function~A3! are
equal to

An5
1

Ad1~12d!tn
21tn sin~znp!/znp

,

Bn5Antn , ~A5!

where

tn52
sinpdzn

sin@p~12d!zn#
. ~A6!

The explicit expression for the spectrum~A4! can be
given in the limiting cases of weak and strong potential b
riers. If the barrier is weak,g/z!1, the spectrum is

zn5n1Dn , Dn'
g

pn
sin2~pnd!. ~A7!

In the opposite case of strong interfaceg→`, the spec-
trum decouples into two independent series of levels for e
layer:

zn1
5n1 /d, zn2

5n2 /~12d!. ~A8!

For large, but finiteg, the corrections to the spectrum~A8!
can be easily obtained by expansion inzn /gd or zn /g(1
2d):

zn1
'

n1

d S 12
1

gD , zn2
'

n2

12d S 12
1

gD . ~A9!
1-9
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A. E. MEYEROVICH AND I. V. PONOMAREV PHYSICAL REVIEW B67, 165411 ~2003!
An important restriction for Eq.~A9! is that the energy levels
in each of the layers, Eq.~A8!, should not be very close to
each other. In the case of near degeneracy, the two c
levels, as usual, repel each other with a resulting gap equ

Dzn.
zn

pgd~12d!
. ~A10!

The above equations should be modified if the interface
very close to one of the external walls of the well, i.e.,
eitherd!1 or 12d!1.

Note that if thed-type barrier is located exactly in th
node of one the wave functions of the empty well, this wa
function remains the eigenfunction of the well with a barr
inside irrespective of the strength of the barrier. This me
that the energy levels that correspond to such wave funct
are not shifted by the presence of the barrier.

The matrix elements of the roughness-related perturba
~6! can be calculated with the help of the above functio
~A3! and ~A5!:

Gnm5@Cm~L1!Cn8~L1!1Cm8 ~L1!Cn~L1!#2

5S 2p

L2
AmAnD 2

gnm
2 ,
tt.
.

.

ys

e

s.
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gnm5g sin~pzmd!sin~pznd!1zm cos~pzmd!sin~pznd!

1zn cos~pznd!sin~pzmd!. ~A11!

The most important are the diagonal matrix elements

gnn5sin~pznd!@g sin~pznd!12zn cos~pznd!#

5
zn sin~pznd!sin@pzn~122d!#

sin@pzn~12d!#
. ~A12!

Note that the zeros of the denominator in Eq.~A12! are
canceled out by the zeros ofAn

2 , Eq. ~A11!. When the inter-
face has a finite widthd, the matrix elements acquire th
following addition:

gnm
2(tot)5gnm

2 1d2~Dgnm!2,

where

Dgnm52znzm cos~pznd!cos~pzmd!

2~zn
21zm

2 !sin~pznd!sin~pzmd!1ggnm .

The total matrix elementGnm
(tot) is never zero. This means tha

the term withd2, which originates from the smearing of th
interface, provides a natural cutoff for the conductivity.

In degenerate metal films, of all the energy minibandsen ,
only the minibands withn<Int@L/lF# are occupied.
.
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