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Quantum size effect in conductivity of multilayer metal films
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Conductivity of quantized multilayer metal films is analyzed with an emphasis on scattering by rough
interlayer interfaces. Three different types of quantum size eff@8E) in conductivity are predicted. Two of
these QSE’s are similar to those in films with scattering by rough walls. The third type of QSE is unique and
is observed only for certain positions of the interface. The corresponding peaks in conductivity are very narrow
and high with a finite cutoff which is due only to some other scattering mechanism or the smearing of the
interface. There are two classes of these geometric resonances. Some of the resonance positions of the interface
are universal and do not depend on the strength of the interface potential while the others are sensitive to this
potential. This geometric QSE gradually disappears with an increase in the width of the interlayer potential
barrier.
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I. INTRODUCTION mentum along the filmyz plan@. In the simplest case of a
single-layer film approximated by a rectangular quantum
Boundary scattering is essential for a complete descripwell, the quantized values of thecomponent of momentum
tion of nanosystems such as quantum wells, ultrathin films oare Px, = mj/L (here and below:=1). If in such quantized

wires, etc. Due to the large surface-to-volume ratio, boundmeta| films the Fermi energ is unaffected by the quan-
aries are expected to play a much greater role in determiningzaiion, the Fermi surface reduces to a set of 2D curves
the overall properties in a nanostructure than in a bulk ma%;:j(q) that correspond to cross sections of the 3D Fermi

terial. For example, recent scanning tunneling microscopyéurface —E. bv a set of plane. = mi/L ]
(STM) data have shown that electron energy spectra can be €(p)=Er by P Py =T éri(Q)

more strongly correlated to the buried interfacial lattices than— EF(pxj’Q)'

to the surface immediately beneath the STM'tithese ob- This quantization of motion, which is determined by the
servations clearly indicate that a small lateral variation alondilm thicknessL, leads to several types of QSE. First, any
the boundary can have a significant long-range effect in &hange of the film thicknedsresults in a change in the size
semiballistic electron system. Thus, a more realistic descripand number of the Fermi curves:;(q). This thickness-
tion of a nanoscale-quantized system must go beyond thériven change in number of the Fermi curves(q) [or,
common perfect geometric boundary and include boundaryhat is the same, number of occupied minibargi&)]
corrugations. Indeed, random surface roughness of a thileads to a singularity in the density of states. These singu-
metal film can dominate incoherent scattering and relaxationarities are the most obvious manifestations of QSE.

and can lead to an anomalous quantum size effect such as These singularities in the density of states, by themselves,
large oscillatory dependence of the in-plane conductivity ordo not lead to anystriking anomalies in the dependence of
the film thicknesg. the lateral conductivityr of the film on the thicknesk. The

The same must be true not only for the quantum wellconductivity is more sensitive to electron scattering than to
(film) walls but also for the interlayer interfaces in multilayer the density of states. However, the change in the number of
films. It is well known that the roughness of the interlayer occupied miniband$ can be accompanied by a change in
interfaces plays an important role in, for example, giantthe number of allowed scattering channels that correspond to
magnetoresistancesee the review in Ref. 3 and referencesthe scattering-driven electron transitions between minibands
therein. The purpose of this paper is to analyze the effect ofe;(q). The effect of this steplike change in the number of
irregular corrugation of the interlayer interfaces on the laterakcattering channels on the conductivity is much stronger than
conductivity of quantized multilayer films without magnetic that of the singularities in the density of state#/hen all
effects. We will see that the interface scattering can result iscattering-driven interband transitions are allowed, the QSE
unique features of the quantum size eff@@SB which are  manifests itself as a pronounced sawlike dependence of the
strikingly different from the QSE with scattering by bulk or conductivity on the film thickness. This type of QSE in quan-
wall inhomogeneities. Orbital and spin magnetic effects oftized films has been predicted both for scattering by impuri-
the type studied in Ref. 4 will be studied separately. ties and surface inhomogeneitifs?

In ultrathin films, the motion of electrons across the films  When the main scattering mechanism is the scattering by
can be quantized. QSE in metal films is studied experimensurface inhomogeneities, many of the interband transitions
tally by measuring conductivii and susceptibility of the  can often be suppressed. This happens, for example, when
films or in spectroscopyand STM (Ref. 1) measurements the average size of the surface inhomogeneifess much
(for earlier results, see references thereis a result of the larger than the the thickness of the film and/or the particle
QSE, the three-dimension@BD) electron spectrume(p) wavelength,\¢. Then the usual QSE, which is described
splits into a set of minibands;(q) whereq is the 2D mo-  above, disappears and is replaced by a different kind of the
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size effecf This anomalous QSE, which is somewhat remi-is completed. An advantage of such setup with a buried in-
niscent of the magnetic breakthrough, is completely decouterface is that it allows one to measure the conductivity at
pled from the singularities in the density of states and isvarious values of the film thickness witixactly the same
associated solely with opening of interband scattering chanrandom rough interface.
nels for gliding electrons at certain values of the film thick- | this setup, the thickness of the first layiey, should be
ness,Li=/(i+1/2)R\¢/2. considered as fixed, while the thickness of the second layer,
The main goal of this paper is to analyze QSE in|, is variable. Below we calculate the film conductivity
multilayer films with an emphasis on the scattering by theas g function of the film thicknesg,=L,+L,, o(L), as-
interface between the layers. We will see th{:\t, in addition t_%uming thatL,=const. The measurements of conductivity
the above two types of QSE, the multilayer films can exhibit.,, e performed in stationary conditions at different values

a peculiar "geometric™ QSE with very narrow high peaks in of L, or as a function of time, in the process of film growth

the lateral conductivity. Some of the positions of these splke§JlS in Ref. 12.

in conductivity are universal; these spikes appear when the The second layer can be made of the same or different

ratio of the thicknesses of the film layers is given by simple aterial as the first. If the material is different, then the elec-

fractions. The position of the rest of the spikes depends ofl"
the strength ofpthe interlayer interface. P P tron potential energy between the layers differs by sarbe

In the next section, we briefly present the main equationd N structure of the energy spectrum becomes a complicated
for the conductivity and introduce proper dimensionless varifunction of AU, making the behavior of conductivity highly
ables. The results are presented in Sec. lll. Section [V confregular.
tains the summary and a brief discussion of the results. The Below we consider both layers to be made of the same
Appendix contains auxiliary information on the energy spec-material with the interface being the only disruption in the
trum of multilayer films of the type used in the calculations. potential relief. Then the simplest model of the interface is

the §-functional potential barrier

II. CONDUCTIVITY
A. Scattering by the interlayer interface U=Uyd(x—L,—&(y,2)). 2)

For simplicity, we consider an ultrathin film of thickness

L consisting of only two layers with the thicknesslof and . , . .
L,. The interface between the layers is rough with random' NS immediately introduces two new physical parameters

corrugation. The exact position of the interface=L; into the pr.o.blem: the strength of the barrldg and its(av-
+£&(y,2), is described by the random functigify,z) with erage position L;. In'vyhat follows, we study the depen-
zero averagéé)=0. The random interface inhomogeneities dence of the conductivity on these parameters. When neces-

£(y,z) are best characterized by the correlation functionsary, instead of theé function we will study the corrugated
£(9), interface with finite widthD. In experiment, the barrier can

be a dislocation wall, twin boundary, or an oxide or dielectric
layer (see, e.g., Ref. 14 and references therein
{9=L(s)=(&(s)é(s1+ S)>EA71J' &(sp)é(st9)dsy, The presence of the interfa¢@) changes the spectrum.
(1)  When calculating the changes in the spectrum, one can ig-
nore small corrugatioré(y,z). The changes in spectrum
where the vectos gives the 2D coordinates along the inter- caused by theé-type barrier(2) are discussed in the Appen-
face andA is the averaging area. Here, it is assumed that thelix. The random corrugation of the interface is responsible
correlation properties of the surface do not depend on diredor the electron scattering and gives rise to the collision op-
tion. Two main characteristics of the surface correlationerator in the transport equation.

functions ¢ are the average amplitudéheight”) and the The scattering by the interface inhomogeneities leads to
correlation radiug“size” ) of surface inhomogeneitie§,and  the transitions between the stategq) —€;(q’). Several
R ways of calculating the corrugation-driven transition prob-

To emphasize the scattering by inhomogeneities of thabilities W;;(q,q") are described in Ref. 13. The simplest
interlayer interface, we start from films with ideal outside methods are either the direct perturbation apprbachthe
walls that do not contribute to electron scattering. The commapping transformation methd@iboth giving the same re-
bined effect of interface and wall inhomogeneities will be sult in most of the parameter range.
considered elsewhere. The corrugation-driven contributioAU to the interface

Mostly we are interested in the dependence of the latergdotential, Eq.(2), with small corrugatiorg is
conductivity on the film thickness and have in mind the fol-
lowing experimental situation. The first layer of the film is
grown on someideal substrate. The surface is then rough- SU=—Upé(y,2)8" (x—Ly). 3
ened by adding inhomogeneous adsorbate or by some other
means. The growth of the second layer starts from this rough
interface, and the conductivity is measured at different val-The matrix elemen¥;;(q,q') of this perturbation between
ues ofL, either in the process of growth or after the growththe states;(q),€;(q’) is

165411-2



QUANTUM SIZE EFFECT IN CONDUCTIVITY CF. .. PHYSICAL REVIEW B 67, 165411 (2003

vij=—uof exfis (q—q)]&9 V(08 (x—Ly) :_ﬁz bi(G) G ©

XW¥j(x)dxds
=Uoé(q—q")[Vi(L) V(L) +W/(L)V;(Ly)],

B. Dimensionless variables

The problem involves several length scales: particle
(4) Fermi wavelengthy = 7/ pg ; the thickness of the layerk,
andL, (L;+L,=L); the correlation radius of the surface
where W;(x) are the quantized wave functions for electroninhomogeneitiesR; and the interface thickned3. Another
motion across the film. Note that the derivativés(x) for length parameter, the amplitude of inhomogeneities per-
films with a 8-type barrier inside are discontinuous at theturbative and enters conductivity as a coefficient,
position of the barrierx=L,. Therefore,¥{(L,) in Eq. (4) &
sh(()))u]lldz be understood a@/(Ly)=[W/(L,+0)+¥/ (L, o Zh R? X f Ly RD). 10
_The corrugation-driven transition probabil®;;(0,d) is o6 that we consider only the contribution from surface
given by the square of this _matrlx eleme_,-nt which should beroughness and disregard the bulk scattering. As a result, the
averaged over the random inhomogeneiges conductivity (10) diverges in the limit of vanishing inhomo-
5 ) ) geneities {—0 or R—o. The proper account of bulk
Wij(a,9")=(|Vij(a,a")|%¢=U5¢(lai—a])Gij,  (5)  scatterind’ eliminates this divergence.
It is convenient to measure all length parameters in units
Gij :[\Ifi(Ll)\IIJ_'(Ll)+\1fi'(|_l)\1fj(|_l)]2, (6)  of the Fermi wavelength = /pg . Instead of the interface
strengthU,, we use interchangeably two equivalent dimen-
where {(|gi—q;|) is the Fourier image of the correlation sionless parametegsand uy,
fgnction of the interface i_nhomogeneitieé$). The coeffi_- g=UoL/ 7\ g =2mMU\ gL/ 72 (11)
cientsG;, are calculated with the help of the wave functions

presented in the Appendix. The explicit form Gfy is given (g is convenient for calculation of the spectrum whilgis a
in the next subsection. proper energy parameter for characterization of the conduc-

The transport equation is a set of equations for the eled tivity in our setup. The position of the interface is charac-

tron distribution function$;(q) in minibandse; and has the tenzed by the parametet,

standard Boltzmann-Waldmann-Snider fdfm s=L,I/L. (12)

5, In computations,é changes from Qno second layerto 1

dm ani E Wi n—n 18 , 4 d°q o (the second layer much wider than the firdt is worth re-

at " L €ig™ €ja’ (2m)? peating that we are looking at the experimental situation
when the thickness of the first layer is fixed and the conduc-

The integration overdq’ is done using thes function  fivity is measured as a function of the thickness of the second

_ _ r_ ; layer (or the overall film thicknegs

d(€iq ejq,)—mi’] o(q’ —dij)/gi; ,» whereq;;(q) is the solu- ) . . .

tion of the equatiore;(q;;) = €(q) and the effective masses en;—rhe ir;?tgy spectrums(q) is described by dimensionless

mis =q;; /(9 /c7q)|q:qij. As always in the transport theory, 9y v

the angular integration is eliminated by using the angular 1 (=2 )

harmonics. The current is given by the first harmonic of the fi(Q): Py L2 Z| +9°/, (13

distributionn(l)E v; the equation for which involves only the

zeroth and first harmonic#/®(q,q;;) of W(gq—g;) over where z; is given by the solu_tlon of the 1D Scldimger
equation for a quantum well with &type barrier insidésee

the angleqq” ' the Appendix:
dvi(q)/dt=—; Vj(qu)/le ) Sin7TZ+gSir(Wzg)Sir{’ﬂZ(l_(s)]:O. (14)
Finally, the conductivityo(L) for the experimental setup,
1 0) 1) which has been described above, will be displayed by the
T_ij:_ 2 [8; Wi~ SiWij 1, dimensionless functiof, (L/\g),
0,1 20,1 2¢* R°
Wi(j' )=U0§( ' )(qi_qj)Gijv 8 O'(L)__ﬁfl-’ (15)
where, to simplify the equations, we assume that the effecfor various values oR/Ag, D/\g, L;/\g, and the strength
tive massm;; does not depend on its indicea=m; . of the barrierug.
The solution of Eqs(8) provides the 2D conductivity of All the figures below present this dimensionless function
the film: f_. This function is plotted under the assumption that the
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experiment is performed at fixed thickness of the first layer. pr e T R T S
For uniformity, the figures for weak interfaces are plotted for 2% 107
up=0.1 and, for strong interface barriers, fog=10. The '

— 7:
simplest energy spectrum corresponds to thin first layers, < L5x10F
Ne<L,<2\g. Therefore, for transparency of results, the % 1x107F

= :

majority of the data are presented fof/A=1.1 (for com-
parison, some of the graphs give the conductivity for larger
L,).

The computational results below are presented for the 2
Gaussian correlation function of the interface inhomogene-
ities,

0.5><107E

FIG. 1. Dimensionless conductivity of quantized films, ELp),
{(s)= €2 exp(— s2/2R?). (16) as a function of the film thickneds. The sawlike dependence is
typical for the standard quantum size effect. The correlation radius
The angular harmonics for this correlator, which enter theof inhomogeneitiesR/Ag=1; the thickness of the first layer,
transition probabilities in Eq8), are equal to L,/\g=2.1; the width of the interfaced=D/\g=0.01; and the
strength of the barrieyy=0.1.
(g ,q5) =47 2R e 14(QQ’)]e” (@,
true for scattering by the interlayer interfaces. This is illus-
(g, 'qj):47Tg2R2[e—QQ’|l(QQ/)]e—(Q—Q’)Z/Z, trated in Figs. 1 and 2 which show(L) for a weak and
(17) strong interface potentials,=0.1 anduy=10 respectively.
In Fig. 1 the thickness of the first layerlis=2.1 and\ g, in
Fig. 2,L;=1.1\¢. In both figures, the size of inhomogene-
ities isR=\g . Both figures exhibit a well-pronounced saw-
like structure. The positions of the singularities for the weak
Snterface are almost equidistant, reflecting the fact the energy
) .. structure is close to that for a square well without perturba-
>L, the results for all types of correlators with exponentialy, jnside. The strong interface affects the energy spectrum
power spectra are similar to those for the Gaussian correlatQl, herefore, the positions and the shapes of the sawteeth.
and are qualitatively different from the power-law correla- However, at very large film thickneds>L , the interface is

tortg ' The rehs;{llts forlthe powir.-tl_e;v;/hcorrtela(tjorz are I?ES 'ntgrocated very close to the well wall and the spectrum starts to
esting: such films always exhibit the standard sawlike Q ecover its unperturbed structure. This manifests itself in a

irrespective_of the value_ R _because of the \_Nide_r fluctua- recovery of the equidistant distribution of the singularities in
tions of the inhomogeneity sizes. Therefore, in this paper w ig. 2 at largeL. Because of a peculiar dependence of the

consider only the exponential correlators with a well-define ransition probabilities on the interface strengske the Ap-

size of inhomogeneities. pendix, the conductivity grows much faster with increasing
film thickness in the case of the weak interface than for the
lll. RESULTS strong interface.

A. Standard quantum size effect

whereQ=q;R, Q"=q;R.

Analysis of QSE in Ref. 2 for ultrathin films with scatter-
ing by the film walls demonstrated that the results for all
types of correlators are qualitatively the same as for th
Gaussian one whemlR<L. For large inhomogeneitieR

. L. . ) B. Quantum size effect for large-scale inhomogeneities
The standard quantum size effect in films manifests itself Q 9 9

by a sawlike dependence of the conductivityon the film The standard QSE of the type described in the previous
thickness L. The positions of the singularities—the Subsection disappears in the single-layer film when the cor-
sawteeth—correspond to the values of the thickness at whictlation size of inhomogeneitie®, is larger than the film

a new energy miniband; becomes accessible. The ampli- . e ——
tude of the conductivity drop in such a singular point de- 10" ¢ 3
pends, in the case of scattering by surface inhomogeneities, 10t E 4
on the effectiveness of the roughness-driven interband tran- i ]
sitions. If the probability of such transition®, ., , is small
in comparison to the rate of the intraband scatteig, the
singularities in the curves(L) are almost completely sup-

w

fr,(L/A¥)
2 e
|

—_
o
T
|

pressed and the standard QSE disappears. ]
Analysis of the roughness-driven transition probabilities 1 b b L — L ]
for surface scattering in Ref. 2 for different classes of surface 2 6L/A 10 12
roughness showed that, when the average size of inhomoge- F
neities, R, is much smaller than the film thickness the FIG. 2. Standard QSE in conductivity of quantized films, Eq.

values of the interband transition probabilité6..; are com-  (15), as a function of the film thickneds for strong interface po-
parable to that for the intraband scatterMf and all scat-  tential, u,=10. The correlation radius of inhomogeneitid¥\ -
tering channels are equally important. In this case, the curves 1; the thickness of the first layelr; /\g=1.1; and the width of
o(L) always exhibit the standard QSE. The same should behe interfaced=10"4.
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thicknessR>L, andthe correlation function in the momen- AR
tum space{(q) (the so-called power spectrum of inhomo- 1‘2x109_
geneitie$, decays exponentially at large wave numbars = 9
Instead, the single-layer films exhibit an anomalous ®@SE. = g

The explanation involves the interband transitions. It % 0.6x10°F 8
seems that at large the off-diagonaW, ., are small and the - of
interband transitions are suppressed. However, at certain val- SandO o
ues of largd., few of the element®V,_.,, which are close to RS E E
the main diagonal, could become comparablétpeven for 5 10 15 20 25
large R. Then the transitions—i+1 could become notice- L/ A

able, leading to a drop in conductivity. A simple estimate of £ 3. Anomalous QSE in conductivity of quantized films, Eq.
the peak positions is the following. Scattering by surfaces) as a function of the film thickneds The correlation radius of

inhomogeneities changes the tangential momentun\y  inhomogeneities is largeR/\=200; the thickness of the first
~m/R. This is sufficient for the interband transition when |ayer, L, /\z=2.1; the width of the interfaced=0.1; and the
Ag~0Qi—0j+1. When the number of occupied minibands is strength of the interface barriarg=0.1.
large, the lateral Fermi momentum for the gliding electrons, )
i.e., electrons from the miniband with a relatively small in- @nomalous QSE's. As has already been mentioned, our nu-
dex i, g;~pg. For such electronsqiz—qiﬂpzqu/)\F merl_cal example's'addrgss_the expt_arlment in which the size of
~272/R\ . On the other hand, the energy conservation lawf€ inhomogeneitiesR, is fixed while the thickness of the
dictates qiz—qiz+1=(2i+1)772/L2. Accordingly, with in- film, L, is changing. In general, at the vaIuEs_ﬁR. one
creasingL the transition channeli+1 opens at_2~ (i should see the_smooth anomalous QSE oscillations with
+1/2)RNg . The opening of a new scattering channel in theIarge periad, while aL.>R one should, on the_ same curve,
points see the reappearance of the standard QSE with sh_grper oscil-
lations with period equal to 1. Roughly, the transitions be-

~Ji+12RNe tween the regimes occurs when the distance between the
Li= V(i +1/2RAe (18 peaks of the anomalous QSE, Ef8), decreases to the value
is always accompanied by a drop in conductivity. The first(L;,,;—L;)/Ag~1. In principle, the reappearance of the
such drop occurs for the electrons in the lowest minibandtandard QSE should be seen in Figs. 3 and 4 when the
e;(q) with i=1, i.e., for the grazing electrons. Note that computations are extended to sufficiently latgeHowever,
these particular electrons contribute the most to the condugdhe amplitude of the standard QSE oscillations on these
tivity. Since the electrons from the lowest miniband are re-curves is very small and the reappearance of the oscillations
sponsible for the dominant contribution to the conductivity,is barely noticeable on the scale of the curve. It is much more
the conductivity drops almost by half in the poiht; illustrative to demonstrate the effect at intermediate values of
~+J3R\g/2 whereW;, becomes comparable W,;; and the R when both anomalous and standard QSE oscillations have
effective cross section doubleéin the quasiclassical film comparable amplitude. This is shown in Fig. 5 fef\g
without bulk scattering, the current, which is an integral over=3 and weak interfaca,=0.1. On the left side of the graph
momenta, diverges when the component of momentum pepne can clearly see smooth “new” oscillations with a rela-
pendicular to the film goes to zero, i.e., for the grazing electively large period, while on the right side the oscillations
trons. Without the bulk scattering, the conductivity is finite recover the sharp sawlike structure with period equal to 1.
only because of the quantum cutoff@t= w/L.)

The anticipation was that this type of QSE should mani- C. Geometric (fractional) quantum size effect

fest itself also for the-interface s_cattering in multilayer films 145 exhibit the QSE oscillations of the previous subsec-
at R>L for exponentially decaying surface correlators. 'n‘tion, Figs. 3 and 4 were plotted not for the exabtype

deed, such a picture_ can_be observed in Figs. 3 and 4 fc?ﬁterfaces(Z) and (3) but for a somewhat smeare(ess
ug=0.1, 10, respectivelyin both figures,L;=1.1]\¢, R sharp interface

=200ng). The positions of the peaks in Fig. 3 for the weak

interface are close to Ed18). In the case of the strong [T A e
interface, the shift of the energy levels from those for an 5x10°

“empty” square well is much more noticeable and the posi- . 4x10°L

tions of the peaks in Fig. 4 deviate from those given by Eq. - .

(18). At large values ofL, the positions of the peak with 3 x0T

strong interface become close to the points in which the = 2x10°h

thickness of the second laydr,=L—L,, rather than the 1x10°L

overall thickness. is given by Eq(18). The amplitude of the .

anomalous QSE oscillations grows with the increasing é '10' - '15' - '20' - '25
strength of the interface approaching that for the impen- L/ g

etrable wall.
Of course, for the inhomogeneities of the intermediate FIG. 4. Same as in Fig. 3, but for a much stronger interface
size, the picture exhibits the features of both standard anBarrier,u,=10.
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10° . . . the geometric coefficients;;, Eq. (6). For exponentially
o decaying correlators with large>L, the off-diagonal val-
. 10? _ ] ues pf the corre_lation func_tiog‘(qi - qj’) With i # ] are expo-
s E nentially small in comparison with the diagonal onéég;
E 2 i —q/). Then it is sufficient to analyze only the diagonal ele-
w10 F 3 ments of the matrixG;; , Eq. (6):
2 [
mz_ e G =4VZ(L)W/?(Ly). (20)

6 10 14 18 22 If, accidentally, theS-type interface is positioned in the
L/ points in which either?;(L,)=0 or ¥/(L,)=0, then the

FIG. 5. QSE in conductivity of quantized films, EQ5), as a  COefficientG;; and, therefore, the transition probabil¥y;;
function of the film thickness. for the intermediate values of the P€COMe zero. This, in tum makes the conductivity of elec-
size of inhomogeneitied}/\=3. The thickness of the first layer, trons in the miniband; and, therefore, the overall conduc-
Ly/\g=1.1; the width of the interfacey=0.1; and the interface tivity almost infinite. The cutoff is determined by one of
barrier,u,=0.1. At smallL, the curve exhibits the smooth oscilla- three factorsi(1) exponentially small interband transitions,
tions of the anomalous QSE with a large period, while QSE for(2) scattering by other defects such as impurities, inhomoge-
large L recovers the standard sawlike shape with period equal to Ineities of external walls, etc., an) smearing of the inter-
face, (19), which leads to the averaging &;;, Eq. (6) and
(20), over a finite interval, making it nonzero. In this paper,
) ) o ) . for obvious reasons, we are interested in the third option.
The interface widthD can have two origins. If its origin is Note that in the case of scattering by external film walls
corrugation related, t.hen the |n'§erface width is given py theénstead of the interlayer interface, the coefficiem§~i2j2
next term_ of expansion of the interface barrierérand is  zre never equal to zero and this type of QSE does not exist.
characterized by the same parametesndR, D*~(&?). In The first type of spikes corresponds ¥9(L;)=0. The
this case, depending on the correlation functibn;- £ or  «esonance” positions of thes-type interface are universal
D~{“/R. On the other handD can originate from some anq do not depend on the potential strength. This is true for
“internal” smearing of the interface and can exist even with- 5| rational pointss=L, /L. Of course, the conductivity of
out surface inhomogeneities. In this caBeis a new inde- he film becomes infinite for this position of the interface
pendent small parameter. Note that here we are interested Bhly if the corresponding miniband; is occupied. This
the “smearing” of the interface and not in its “fixed” width  ,eans that the integer in the denominator of the corre-
so that the average of the square of the matrix elements Qf,onding fractions=m/n should not exceed the number of
58U over the interface starts fro?. In Figs. 3 and 4, the the occupied minibandsn<=S=Int[L/\¢]. Indeed, for
interface thickness was chosendxs D/Ag=0.1. points 8=L,/L=m/n there is a number of wave functions

If the mterfacp is thinner, the cha_tracter of the CUVeSy (x) of the emptywell that have nodes in the points
changes dramatically. For example, Fig. 6 presents the con=| " gjnce the unperturbed homogeneous potential barrier
ductivity o(L) exactly for the same values of all parameters, o< 4 5-functional formUyd(x—L,), these wave functions

as in Fig. 3 except for the interface thickness which is “OW\Pi(x) remain the eigenfunctions of the welith the unper-
d=D/\¢=0.0001. The difference between the two Curves iSy,rheq barriet ,6(x— L) inside and retain their nodes in

astonishing. . _ the pointsx=L,. Then the corresponding diagonal coeffi-
hThe clondqctlwty in Fig. 6 eXh'pl'(tS t\_/vohtypeﬁ of sp|kehs. cients G are zero, making the diagonal roughness-driven
The explanation for first type of spikes is the following. The y4sition probabilitieav;, for particles from the minibane,

scattering-driven transition probabilitie#/; , Eg. (5),' CON- " equal to zero as well. Since the off-diagonal transition prob-
tain the factor with the correlation functiof(q;—q;j) and  gpjjities are exponentially small iR/L>1, the condition

DN

SU=—Uyé(y,2)[8'(x—Ly)+D8"(x—Ly)]. (19

W;; =0 makes the conductivity for particles from the mini-

" ' : band ¢;, and, therefore, the overall conductivity exponen-

10 < tially large inR/L>1.
== 1% 1 The structure of the corresponding resonance spikes be-
3106 : comes more and more complicated with an increask;in
;:5104 k when the structure of the minil_)ands and their occupancy

: 1 become more convoluted. The simplest structure is observed
10° 1 whenL , is between\r and 2\ as in Fig. 6. In this case, the
1 L | L 1 3

10 15 20

[ \v]
(@2

L/Ap

observed rational spikes correspond to the rational numbers
of the form §=(n—1)/n and are equidistant with the sepa-
ration L, /\g. The first spike corresponds to the film with

FIG. 6. Geometric QSE in conductivity of multilayer films. The 0=L2/L=1/2, the second t6=2/3, the third tos=3/4, the
same parameters as in Fig. 3, except for a much sharper interfac@urth to §=4/5, and so on. The odd peaks, with the excep-
d=10"*. The fractions near the spikes give the values of the resotion of the first one, look wider and consist of bigger and
nance positions of the interfagg=L, /L. smaller subpeaks. The smaller subpeaks correspond to the
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10 r :
—~ 1"k =
£7 1 3 1
2 10° F ) E
E b & ]

10 F E

10° P . . . L] S T T S T 3

10 15 20 25 5 10 15 20 25
L/Ap L/Ag

FIG. 7. Geometric QSE in conductivity of multilayer films. The  F|G. 9. Illustration of the effect of smearing of the interface. The
same parameters as in Fig. 6, except for a wider first ldyghr  same curve as in Fig. 6, but for a wider interfade; 0.01.
=4.0. The fractions near the spikes give the values of the resonance
positions of the interfacé=L, /L. interface thicknessl. This graduate disappearance of the

) ) o ] geometric resonances can be seen when comparing Fig. 6 for
geometrical resonance with=(n—1)/n which is described Up=0.1, d=10"* with Fig. 9 (d=10"2) and Fig. 10 d

above. The bigger and wider subpeaks have a somewhat dif__-lo—l). Figure 10 presents conductivity for the same con-

ferent nature and are not universal with respect to the barrig{q, ration as Fig. 3 but in logarithmic scale. In this scale, one
strength. These subpeaks will be described later. Note thal ., see both the wide QSE oscillations of the previous

the peakd=3/4 is so close to the first peak from the other g psection and the only surviving geometric resonance at
series that these two peaks are hardly distinguishable. 5=1/2.

When L, becomes bigger, the first few geometric reso-  apoye we explained only the narrower, universal geomet-
nances can be observed at much narrower second layers, Wgll sonances at=m/n in Figs. 6-9. The second, nonuni-

before the pointé=L,/L=1/2, while the density of the \ergq type of spikes has a similar explanation: zerd8of
resonances becomes higher. For example, Fig. 7 preser}&%cording to the Appendix

the conductivity as a function of thickness for the film with ’
the same parameters as in Fig. 6 except for the thickness of

=42 ’2
the first layer which is now.,=4\g. Though the overall Gii =4¥i(L)Wi"(Ly)

distribution of the peaks is now much more complicated, the A2

majority can still be understood as the ones generated by the = —Ai4 sir(mz;8)[ g sin(7z; 8) + 2z, cos 7z, 8) ],
eigenfunctions of the empty quantum well with the nodes in L*

the positions of the barrier. The complexity of the peak struc- (21)

ture is explained by the fact that at a wider first layar

more minibands are occupied, thus allowing a wider selecwherez;(g, 8) is given by the solution of the 1D Schdimger

tion of the rational numbers that determine the peak positionequation(14) for a quantum well with a-type barrier inside.

6=L,/L=m/n. The explicit form of the coefficient8, is not important. The
The geometric resonances can coexist with the anomaloysctor sirf(7z4) in Eq. (21) corresponds tdfiz(Ll); its zeros

QSE of the previous section if the interface is relativelyare responsible for the geometric resonances with rational

strong as in Fig. 8 for the same configuration as in Fig. 6 buls=(n—1)/n. There are no other zeros of &nz ).

with much higher value ofiy, up=10. For weak interfaces,  However, Eq.(21) also contains the factor in the square

the geometric resonances suppress the QSE of the previoggackets which corresponds #/(L;). The simultaneous

subsection which gets restored only for bigger values of th@q|ytion of Eq. (14) for the spectrum, gsin(mzd)

+2zcos(@z8)=0, and equatiort?’/(L,)=0 yields the fol-

4x10° L10? lowing equation for the resonance positions of the interface:
[ 10*
7t 10° _ ]
:‘(r_: 3x10 :—100 o g_ _g
E 9x10°L 5 10 15 20 25 10° r i
= i =108 4 ]
1x10°F g 0 3 ]
[ S0t 1
1 1 1 I 3 g’ }
10 15 20 25 107 :
L/Ag 2 T T B
5 10 15 20 25
FIG. 8. Geometric and anomalous QSE in conductivity of L/Ap

multilayer films for strong interface potentialy=10. The rest of

the parameters are the same parameters as in Fig. 6. For easier FIG. 10. lllustration of the effect of smearing of the interface.
comparison with Figs. 4 and 6, the inset gives the same data ithe same curve as in Figs. 6 and 9, but for an even wider interface,
logarithmic scale. d=0.1. Data as in Fig. 3, but in logarithmic scale.
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si7z(1-26)]=0, (220 by the anomalies in the cross section for scattering by inter-

o . face inhomogeneities. This scattering-driven QSE replaces
which is equivalent to the standard sawlike QSE when the correlation racsise
z(9,0)(1-26)=k, 23) of the interface inhomogeneities is large>L. This type of

QSE manifests itself as smooth large-scale oscillations on the
with integerk. First, there is a universal solutiof=1/2 at  dependencer(L) and should be observed only when the
k=0. In this case, when the interface is exactly in the middleFourier image of the interface correlation functithe so-
of the film, both¥;(L,) and ¥/ (L,) are zero(the former called power spectrum of inhomogeneilieecays exponen-
with an even index, the latter with an odd indeXhis ex- tially at large momenta. The main difference of this QSE
plains why the geometric resonance with 1/2 is the most  from a similar effect in scattering by the film wdllss that
stable one with respect to the smearing of the interface. the observation of this effect in multilayer film requires cer-

The rest of the resonances wiki¥ 0 are not universal. tain smearing of the interface.
These resonances explain the earlier unaccounted for spikes The third type of QSE is new and is most unusual. This
in Figs. 6—8. Since the spectrum(g,d) is a complicated effect manifests itself as a set of very narrow and high spikes
function of the interface strength and its position, the soluin o(L) and replaces the scattering-induced QSE described
tion of Eq.(23) for k#0 is rather complicated. We will give above when the interface is narrow. The finite cutoff in the
the analytic equation for the simplest casengi<L, <2\  Spikes can be ensured either by some other scattering mecha-

when Eq.(23) is equivalent to nism or by the smearing of the interface.
The spikes are observed only for certain resonance posi-
L B 2z, Lg (24 tions of the interface. The number of spikes is determined by

the relation between the thickness of the layers and the Fermi
wavelength. The resonance positions of the interface are de-
(the only allowed values ok are k=—n+1). For weak scribed. These positions can be split into two general classes.

Ne  Zo—n+1Ap

interfacesg/z,<1 this equation can be rewritten as Some of these positions are universal and do not depend on
the amplitude of the interface potential barrier and corre-
1 _n-1 9 spond to the situations when the ratio of the layer widths is
=2n|1 Apl,  Ap=——sir?(wnd). ! : ; . . : ;
1-6 n TZy given by simple rational fractions. The integer in the denomi-

(25 nator of such fractions does not exceed the number of occu-
Analysis of Eq.(25 shows that several of the first of such P'ed minibands. Th_e remaining resonance positions of the
resonance positions of the interface are indeed close to tHgterface are no.nunlversal and depend on_the strength of the
odd rational universal resonances as in Fig. 6, interface potgnnal. In th_e_ case of a weak mterfape, some of
these nonuniversal positions are close to the universal ones,
2l—1 giving the impression of a split in the conductivity spikes.
o= TR A too small width of the resonance spikes can impede the
experimental observation of the geometric resonances. The
and separate from the universal resonances with increasingidth of the resonance spikes increases and their height de-
integer|. The very first resonance at=1/2 is, as is ex- creases with increasing smearing of the interface and the
plained above, exactly the same as the first universal reséesonance spikes gradually disappear. Note that this disap-
nance. The reason why these nonuniversal resonances dearance of the resonance spikes is related not to the widen-
wider and stronger than the universal ones described aboveiiRg, but to the random smearing of the interface—the wid-
still unclear. ening of the interface, by itself, results just in a shift of the
spike positions. The width of the universal resonances is
V. CONCLUSIONS equal, by the order of magnitude, to the width of the smeared
interface D, Eq. (19), or, in dimensionless variables
In summary, we analyzed the QSE in the conductivity of=D/\g. The width of nonuniversal resonances is somewhat
multilayer films when the main scattering mechanism is thdarger and is less sensitive f; the reason is still unclear.
scattering of electrons by random inhomogeneities of the inNote that the smearing widfh can be much smaller than the
terlayer interface. Three different types of QSE are predictedphysical thickness of the interface, which in metals is often
The first one is a standard QSE with a typical sawlikelarger than or of the order of the Fermi wavelength. In
dependence of the conductivity on the film thicknesd., contrast to this, the smearing parameter D/ can be
o(L). This effect dominates when the correlation radiusvery small. The most stable spike with respect to smearing
(size of the interface inhomogeneitieR is much smaller corresponds to the layers of equal width. The wide range of
than the film thicknesfR<<L. This effect should be observed possible values oD, which are determined either by the
for all types of correlation functions of the interface rough-roughness wittD of the order of¢ or ¢?/R or by the “in-
ness. This effect is easily explained by the singularities in theernal” smearing of the interface, makes the observation of
electron density of states related to the quantization of mothe geometric resonances possible.
tion across the film. The spikes in the conductivity occur when the scattering
The second type of QSE is explained not by theprobabilities for electrons in one of the quantized minibands
guantization-driven singularities in the density of states, bubecome exactly zero. Since scattering probabilities for scat-
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tering by different interfaces add up, the spikes in conductiv- APPENDIX: ENERGY SPECTRUM
ity of multilayer films with many layers can be observed AND MATRIX ELEMENTS

only if the scattering probabilities for electrons from one
miniband become zero simultaneously for scattering by all
the interfaces. This can happen only if all the interfaces ard’
located in the universal resonance positions corresponding to "2 _ _

the rational fractions from the same series. Otherwise, the YOO HKTP(x) = Uod(x— ) (), (AD)
scattering by inhomogeneities of the “non-resonant interwhere

face” will curtail the contributions from the resonant ones.

The one-dimensional Schiimger equation for a square
ell with a é-functional barrier inside has the form

This imposes a restriction on the number of layers for an k?=2mE/h%  ug=2mUg/h?. (A2)
observation of this type of QSE for a film of fixed overall The wave functions can be written as
thickness.
We analyzed the multilayer films under the condition that 2
the disruption in the electron spectrum be caused only by the n=y(x<L,)= \[EA sinkx,

interface potential while electron potential deep into the lay-
ers is the same for all layers. One can imagine a different 5
physical situation when the electron potential in different _ _ \/: ; _
layers differ from each other as in Ref. 13. In this situation Yo=dx=Ly) LB sink(x=L). (A3)
the resonance spikes in conductivity should be observed
when the position of the interface coincides with one of the In the dimensionless notation of Sec. Il 2, the equation on
nodes in the wave function. It is clear that this occurs at leasthe spectrum acquires the form
for certain values of the interlayer potential different¥.

The calculations in the paper are aimed primarily at the . 9. . B _
experimental setup when the lateral conductivity is measured sin(m2)+ z sin(méz)sin (1= 6)z]=0,
as a function of the film thickness at fixed thickness of the
first layer (fixed position of the buried interfageThe main o=L,/L=<1, kL=mwz, g=ugl/m. (A4)
obstacle for the experimental observation of the predicted
effect is a rather small width of the conductivity spikes and The normalized coefficients in the wave functi@8) are
their sensitivity to the position of the interface. On the otherequal to
hand, this sensitivity of the QSE to the position of the inter-
face may open the door for using this effect for precision 1
control of the interface positions in multilayer films. This An= \/6+(1—5)t2+t snz.m)zom
may be very useful for better quality ultrathin films without n-n n n
short-range surface inhomogeneittésRecent experiments

with controlled ultrathin metal films with buried rough Bn=Anln, (A5)
interface$ indicate that the existing experimental setups argyhere
sufficient for the observation of the predicted quantum size
effect. sinm 6z,
Usually, the QSE in the conductivity of semiconductor th=- S a(1=8)2]" (AB)

films is less pronounced than for metal films. This is ex-

plained by the smoother distribution of electrons in nonde- The explicit expression for the spectrufd4) can be

generate semiconductors. In the absence of a sharp drop §ien in the limiting cases of weak and strong potential bar-
the distribution at the Fermi energy, singular features in theiers |f the barrier is weakg/z<1, the spectrum is
conductivity, which is an integral over the particle distribu-

tion, tend to be smeared out. However, the universal geomet- g

ric spikes in conductivity, which are described above, are Z,=n+A,, Aﬁ%smz(ﬂnb‘)- (A7)
explained by the zeros in quantized electron wave functions
on the interface and have nothing to do with the electron
distribution. Then these spikes in conductivity can be the.,, gecouples into two independent series of levels for each
only striking common feature for the QSE in multilayer layer:

metal and semiconductor films. The only obstacle for the

observation of such spikes in semiconductors could be a rela- 2, =n1/8, 2, =n,/(1-35). (A8)
tively large screening radius which may lead to an effective . 2

smearing of the interface. For large, but finiteg, the corrections to the spectrufA8)

can be easily obtained by expansionzp/gés or z,/g(1
—9):

In the opposite case of strong interfage»o, the spec-
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An important restriction for EQA9) is that the energy levels g, =g sin(7z,,6)siN(7z,6) + Zy, COS 7Z,d) SIN( 7Z,5)
in each of the layers, EQA8), should not be very close to )
each other. In the case of near degeneracy, the two close + 2, CO 72, 6)SIN(7Zpy 5). (A11)

levels, as usual, repel each other with a resulting gap equal thhe most important are the diagonal matrix elements

zZ, Onn=SiN(7z,6)[ g sin(7z,5) + 2z, cog 7Z,6)]
Azy=————. (A10)
7gS(1-9) 2, 8in(m2,8)Sin 7Zy(1-25)]
The above equations should be modified if the interface is B sinf wz,(1—6)] (AL2)

very close to one of the external walls of the well, i.e., if

cither 5<1 or 1— 5<1. Note that the zeros of the denominator in E4l12) are

canceled out by the zeros Aﬁ, Eqg. (A11). When the inter-

Note that if the >type b'f’““er is located exactly !n the face has a finite widthd, the matrix elements acquire the
node of one the wave functions of the empty well, this Waverollowing addition: '

function remains the eigenfunction of the well with a barrier
inside irrespective of the strength of the barrier. This means 2002 1 d2(Agnm)?,
that the energy levels that correspond to such wave f“nCtior\ﬁhere
are not shifted by the presence of the barrier.
The matrix elements of the roughness-related perturbation Agnm= 22,2, cOg 7Z,6)Cc0S 7Z,,0)
(6) can be calculated with the help of the above functions 2. 2. . _
(A3) and (A5): —(z5,+ zp,) siN( 7z, 6) SIN(7Z,6) + O -
The total matrix elemer® ' is never zero. This means that

_ ’ ’ 2
Grm=[Vm(L)Wn(Ly) +We(Ly)Wn(Ly)] the term withd?, which originates from the smearing of the

2 interface, provides a natural cutoff for the conductivity.
2 5 | . o
- == n degenerate metal films, of all the energy minibaggls
~ArAn| i, e : !
L only the minibands witm=< Int[L/\¢] are occupied.
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