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Surface roughness and size effects in quantized films

A. E. Meyerovich and I. V. Ponomarev
Department of Physics, University of Rhode Island, 2 Lippitt Rd., Kingston, Rhode Island 02881-0817

~Received 2 October 2001; published 29 March 2002!

The effect of random surface roughness on quantum size effects in thin films is discussed. The conductivity
of quantized metal films is analyzed for different types of experimentally identified correlation functions of
surface inhomogeneities including the Gaussian, exponential, power-law correlators, and correlators with a
power-law decay of the power density spectral function. The dependence of the conductivitys on the film
thicknessL, correlation radius of inhomogeneitiesR, and the fermion density is investigated. The goal is to
help in extracting surface parameters from transport measurements and to determine the importance of the
choice of the proper surface correlator for transport theory. A peculiar size effect is predicted for quantized
films with large correlation radius of random surface corrugation. The effect exists for inhomogeneities with
Gaussian and exponential power spectrum; if the decay of power spectrum is slow, the films exhibit usual
quantum size effect. The conductivitys exhibits well-pronounced oscillations as a function of channel width
L or density of fermions, and large steps as a function of the correlation radiusR. These oscillations and steps
are explained and their positions identified. This phenomenon, which is reminiscent of magnetic breakthrough,
can allow direct observation of the quantum size effect in conductivity of nanoscale metal films. The only
region with a nearly universal behavior of transport is the region in which particle wavelength is close to the
correlation radius of surface inhomogeneities.

DOI: 10.1103/PhysRevB.65.155413 PACS number~s!: 72.10.Fk, 73.23.Ad, 73.50.Bk
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I. INTRODUCTION

Progress in material technology, especially in nanofa
cation, ultrathin-film manufacturing, ultraclean and hig
vacuum systems, etc., requires better understanding
boundary scattering in physical processes. The boundary
fects should be an integral part of any study of quant
wires, wells, and films. Boundary scattering is especially i
portant for transport in ultrathin and/or clean systems
which the particle mean free path is comparable to the s
tem size.

Below we consider the effect of random surface roug
ness on quantum transport in quantized quasi-tw
dimensional~quasi-2D! systems such as, for example, ultr
thin metal films. The main issue is to find how sensitive
the transport along such film to the statistical properties
random surface inhomogeneities~thickness fluctuations!. An
important by-product of our systematic comparison of diff
ent classes of random surface inhomogeneities is the pre
tion of a new type of size effect in quantized films. Th
effect manifests itself as large oscillations of conductivitys
as a function of the film thicknessL. In contrast to the usua
quantum size effect~QSE!, the peaks can be observed only
relatively large values ofL. The distance between the pea
is large and is roughly proportional toL2. The observation of
this QSE opens an experimental method of identification
the type of surface roughness.

The choice of quasi-2D systems is explained by a de
to avoid divergence of surface fluctuations and strong lo
ization effects which are inherent to 1D systems and mak
systematic quantitative study of the effect of surface inhom
geneities on transport virtually impossible. In contrast to
systems, the randomly fluctuating 2D surfaces are practic
stable while the localization length in systems with we
surface roughness is exponentially large.~In general, the
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transport problems are more interesting in systems w
weak rather than with strong roughness. Transport in syst
with strong roughness is trivial: each wall collision com
pletely dephases the particles and the mean free path ca
exceed the distance between the walls.!

The prevalent way to characterize the random surf
roughness and/or thickness fluctuations is to use the cor
tion function of surface inhomogeneities:

z~s![z~ usu!5^j~s1!j~s11s!&[A21E j~s1!j~s11s!ds1 ,

~1!

where the vectors gives the 2D coordinates along the su
face,j(s) describes the deviation of the position of the su
face in the point with 2D coordinatess from its average
position, ^j(s)&50, andA is the averaging area. Here it i
assumed that the correlation properties of the surface do
depend on direction. Two main characteristics of the surf
correlation functionsz are the average amplitude~‘‘height’’ !
l and correlation radius~‘‘size’’ ! R of surface inhomogene
ities.

Any transport theory for systems with rough boundar
should provide the explicit dependence of the particle m
free path~or the conductivity along the walls! on the cor-
relator of surface inhomogeneitiesz(s). Without bulk scat-
tering, the conductivitys is determined by the relation be
tween three length scales: particle wavelength,L; width of
the channel,L; and correlation radius of inhomogeneities,R.
If the roughness is weak, the fourth length parameterl enters
the conductivity as a coefficient:

s5
2e2

\

L2

l 2
f ~L,L,R!. ~2!
©2002 The American Physical Society13-1
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Note that this 2D conductivity differs by a length unit fro
the usual 3D conductivity and, as a result, has a dimens
ality of conductance.

The form of the surface correlatorz(s) can vary from
surface to surface. Most of the theoretical calculations
sume that this correlator is Gaussian. The numerical sim
tions, on the other hand, often rely on various generators
random rough surfaces without paying much attention to
correlation function of the generated inhomogeneities. B
approaches are not satisfactory since the experiments on
face scattering and diffraction patterns show that real s
faces exhibit surface correlators~1! of various forms.1,2 Even
one and the same film can exhibit various correlation pr
erties on different stages of growth. As a result, the beha
of the functionsf (L,L,R) in Eq. ~2!, which reflects the cor-
relation properties of inhomogeneities, can vary from surf
to surface even when the main correlation parametersl andR
remain the same.

The correlation functions~1! are characterized by differ
ent long-range behavior that can be reliably identified
various surface diffraction and scattering experiments. W
we would like to know is how sensitive is theparticle trans-
port to the form of the surface correlator. In contrast to s
face diffraction and scattering data with angular and
wavelength scanning, the transport coefficients are inte
parameters that include angular and wavelength averag
This leaves the question of how sensitive is the conducti
to the shape of the surface correlator wide open. In addit
we are asking a question whether it is possible to identify
type of surface inhomogeneities from transport experime
in ultrathin films or multilayer systems without prior infor
mation on the form of the surface correlator. The interrela
question is, of course, to what extent one should pay at
tion to the details of the correlator of surface inhomoge
ities in analytical or numerical transport calculations for p
ticles with large mean free paths. The former issue
already been raised in Refs. 3 and 4 for a small set of sur
correlators on the basis of the Born approximation for w
scattering. Below we present a systematic study which
based on a more general transport formalism and involv
variety of classes of surface correlators.

In short, we want to compare functionsf (L,L,R) in Eq.
~2! calculated for various types of the correlation functio
z(s) in a wide range of parameters. We start from degene
ballistic fermions in quantized metal films. The choice is n
arbitrary: transport in such systems involves the minimal
gree of averaging~integration! and can be the most sensitiv
to the long-range properties of the surface correlators~1!.

The quantum size effect in metal films is a subject
intensive experimental study. Recent QSE experiments w
quantized metal films include conductivity,5 spectroscopy,6

susceptibility,7 and scanning tunneling microscopy8 ~STM!
measurements. One of the signature features of the QS
metals is a pronounced sawlike dependence of conduct
on, for example, film thicknesss(L). This dependence wa
predicted for both bulk9 and surface10 scattering. Experimen
tally, the QSE in conductivity was studied for metals in Re
5 and 11~for earlier results see references therein!. However,
experiments on the QSE in metals have to overcome a d
15541
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culty which one does not encounter in semiconductors. T
period of the QSE oscillations in the dependences(L) is
usually small, almost atomic, 1/pF ~below, except for final
results,\51). For this reason typical experimental objec
are lead or semimetal films such as bismuth. Below we p
dict a new type of QSE with large-period oscillations
s(L) at relatively large values ofpFL that could lead to
observation of a QSE in a wider group of metals. Larg
period QSE oscillations have already been observed~see the
second Ref. 5!; however, sketchy experimental details do n
allow one to identify reliably this observation as the ne
type of QSE predicted below. Our results can also resolve
long-standing controversy on the influence of the structure
the nanoscale film on its resistivity.11

Recently, we developed a transparent semianalytical
malism for transport in systems with rough boundaries t
allows simple uniform calculations in a wide range of para
eters and for various types of roughness with and with
bulk scattering.12–14This formalism unites approaches by T
sanovicet al.,15 Fishman and Calecki,16 Kawabata,17 Mey-
erovich and S. Stepaniants,18 and Makarovet al.19 ~for a
brief comparison between different theoretical approac
see Refs. 13 and 20!. Below we apply this formalism with an
explicit purpose of studying the dependence of the trans
coefficients on the shape of the correlation function of s
face inhomogeneities. The well-defined limits of applicab
ity of our approach to metal and semiconductor films a
discussed in detail in Refs. 13 and 14.

Since the 2D mobility of particles is described by esse
tially the same equations as the exponent in the expres
for the localization length in films, our study provides th
dependence of the localization length on the type of the c
relation function of random surface inhomogeneities.

The paper has the following structure. In the next sect
we introduce various types of surface correlation functio
Section III briefly describes the transport equation used
conductivity ~mobility! calculations in QSE conditions. Th
results of transport calculations for different types of corre
tors are given in Sec. IV. Conclusions and experimental
plications are discussed in Sec. V. Appendix A contains u
ful analytical expressions for the power density spec
functions of inhomogeneities responsible for the behavior
scattering probabilities for different types of correlators. A
pendix B deals with the positions of new type of QSE pea

II. CORRELATION FUNCTION OF SURFACE
INHOMOGENEITIES

We consider an infinite 2D channel~or film! of the aver-
age thicknessL with random rough boundaries

x5L/22j1~y,z!, x52L/21j2~y,z! ~3!

~the walls are assumed hard with infinite potential!. The in-
homogeneities are small,j1,2(y,z)!L, and random with zero
average,^j1&5^j2&50. Their correlation functionz ik(s)
and its Fourier imagez ik(q), which is often called the powe
spectral density function or power spectrum, are defined
3-2
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SURFACE ROUGHNESS AND SIZE EFFECTS IN . . . PHYSICAL REVIEW B65 155413
z ik~ usu!5^j i~s1!jk~s11s!&[A21E j i~s1!jk~s11s!ds1 ,

z ik~ uqu!5E d2s eiq"sz ik~ usu!52pE
0

`

z ik~s!J0~qs!sds,

~4!

wheresÄ(y,z) andqÄ(qy ,qz) are the 2D vectors. In homo
geneous systems, the correlation function depends only
the distance between pointsus12s2u and not on coordinate
themselves. The correlation functionsz11 and z22 describe
intrawall correlations of inhomogeneities andz125z21 are
the interwall correlations. Usually, but not always, the inh
mogeneities on different walls are not correlated with ea
other,z1250. Thus, everywhere, except for Sec. IV E, it
assumed thatz1250. To avoid parameter clutter, we als
assume that the correlation parameters are the same on
walls, z115z225z. Then the effective correlator contain
2z(s) with z(s) given by equations below.

Surface inhomogeneities exhibit a variety of types of
correlation functions.1,2 To have a meaningful comparison
we consider the correlation functions that involve only tw
characteristic parameters: namely, the amplitude~average
height! l and the correlation radius~average size! R of sur-
face inhomogeneities.

The most commonly used in theoretical applications is
Gaussian correlation function

z~s!5 l 2exp~2s2/2R2!, z~q!52p l 2R2exp~2q2R2/2!,
~5!

including its limit for small correlation radiusR→0, i.e., the
d-type correlations:

z~s!5 l 2R2d~s!/s, z~q!52p l 2R2. ~6!

Sometimes, a better fit to experimental data on surf
scattering is provided by the use of the exponential corr
tion function

z~s!5 l 2exp~2s/R!, z~q!5
2p l 2R2

~11q2R2!3/2
, ~7!

or by the even more long-range, power-law correlators

z~s!5
2m l 2

~11s2/R2!11m
,

z~q!52p l 2R2
~qR!m

2m21G~m!
Km~qR! ~8!

with different values of the parameterm. The most com-
monly used are the Staras function withm51 and the cor-
relator with m51/2 which has the exponential power spe
trum z(q):

z~q!52p l 2R2exp~2qR!. ~9!

The use of the Lorentzian correlator, which differs fro
the definition~8! at m→0 by the factorm in the numerator,
15541
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z~s!5
2l 2

11s2/R2
, z~q!52p l 2R2K0~qR!, ~10!

deserves a special comment. This correlator is often con
ered as ‘‘unphysical.’’ Its Fourier image~10! contains a func-
tion K0(qR) that diverges logarithmically at long wave
lengthsq→0. The issue to what extent the correlators a
‘‘physical’’ and can be reproduced experimentally is irre
evant in our context. For us, the fact that the Lorentz
correlator is sometimes used in calculations is suffici
enough to consider this correlator in the paper. To deal w
the divergency, one can truncate the Lorentzian correlato
large distances~the common practice is to make a cut-off
the distances about 0.1 of the system length1!. Another op-
tion is to use the generalized power-law correlator~8! with
smallm instead of the Lorentzian~10!. In order not to intro-
duce additional parameters, we use the untruncated equ
~10!. Even though the divergence ofK0(qR→0) does not
lead to any singularities in transport coefficients, the tra
port coefficients for Lorentzian surfaces~see below! often
behave qualitatively different from systems with other typ
of random inhomogeneities, even from the systems~8! with
small m. @Sometimes, the divergence of the power spectr
z(q) is associated with the fractal nature of the surface;1 to
what extent our transport formalism can be used for fil
with fractal surfaces is an open question.#

The last class of correlation functions covers the pow
law correlators in momentum space:

z~q!5
2p l 2R2

~11q2R2!11l
, z~s!5 l 2

~s/R!l

2lG~11l!
Kl~s/R!.

~11!

The correlators from this group include the Lorentzian
momentum spacel50 that was observed in Ref. 2~see also
Ref. 4! and the exponential correlator~7! at l51/2.

The constants in all these correlators are chosen in su
way that the value ofz(q50)52p l 2R2 is the same. This
provides a reasonable basis of comparison for transport
efficients in films with all these different types of rando
surfaces. Indeed, the scattering cross section forq→0 does
not depend on the details of short-range and midrange st
ture of surface inhomogeneities. Therefore, at Fermi m
mentaqF→0 ~more precisely, atqFR!1), the transport co-
efficients should be the same for all random surfaces.@The
only exception is the Lorentzian~10! for which z(q) di-
verges at smallq.]

In what follows we compare the transport properties
the films ~5!–~11! in various ranges of the film thicknessL,
correlation radiusR, and particle wavelengthLF51/qF ~or
2D particle densityN).

III. TRANSPORT EQUATION FOR BALLISTIC
DEGENERATE FERMIONS IN QUANTIZED FILMS

The QSE is caused by quantization of motion in the
rection perpendicular to the film,px→p j /L, and leads to a
split of the energy spectrume(p) into a set of minibands,
e(px ,q)→e(p j /L,q)5e j (q). For simplicity, we consider
3-3
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circular Fermi surfacese j (q)5eF :

e j~q!5
1

2m
@~p j /L !21qj

2#, qj[qF j5@2meF

2~p j /L !2#1/2, ~12!

whereqj is the Fermi momentum for the minibandj. One
can introduce the overall Fermi momentum as

qF51/LF5~2meF!1/2. ~13!

The relationship between this Fermi momentumqF and the
2D density of fermionsN2 in quantized films is somewha
cumbersome,12

N5( Nj5~S/2p!@qF
22~p/L !2~S11!~2S11!/6#,

~14!

whereS is the number of the occupied minibands:

S5Int@qFL/p#. ~15!

If the density of fermions is the same as in the bulk, th
N25n3L where n3 is the usual bulk density. Even in thi
case, the number of the occupied minibandsS, according to
Eqs. ~14!, ~15!, is a complicated function ofL. Asymptoti-
cally, at largeS,

S5Int@~3N2L2/p!1/3#. ~16!

According to Refs. 12 and 13, scattering by random s
face inhomogeneities results in intra- and interband tra
tionse j (q)→e j 8(q8) with transition probabilitiesWj j 8(q,q8)
that are expressed explicitly via the surface correlation fu
tion z(uqÀq8u):

Wj j 8~q,q8!5
\

m2L2
@z111z2212z12~21! j 1 j 8#

3S p j

L D 2S p j 8

L D 2

. ~17!

The generalization to other, more complicated energy spe
is straightforward.13

The transport equation for the distribution functio
nj (q),

dnj

dt
52pA(

j 8
E Wj j 8@nj 82nj #d~e j q2e j 8q8!

d2q8

~2p!2
,

~18!

reduces, after standard transformations, to a set of lin
equations

qj /m52(
j 8

n j 8~qj 8!/t j j 8 ,

2

t j j 8

5m(
j 9

@d j j 8Wj j 9
(0)

2d j 8 j 9Wj j 8
(1)

#, ~19!
15541
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wherenj
(1)5n jd(e2eF)eE is the first angular harmonic o

the distribution functionnj (q) at q5qj , andWj j 8
(0,1)(qj ,qj 8)

are the zeroth and first harmonics ofW(qjÀqj 8) over the
angleqj q̂j 8 . For some of the correlation function from th
previous section the angular harmonics can be calcula
analytically ~see Appendix A!. For others, this calculation is
performed numerically.

The solution of Eqs.~19! provides the conductivity of the
film:

s52
e2

3\2 (
j

n j~qj !qj . ~20!

Equations~19! have simple analytical solution when th
matrix t j j 8

21 can be approximated by a diagonal matrix,t j j 8
21

'd j j 8 /t j :

s5
e2

3\2m
(

j
qj

2t j . ~21!

This happens when the matrixWj j 8
(1) is almost or exactly di-

agonal,Wj j 8
(1).Wj

(1)d j j 8 and

2/mt j5(
j 8

Wj j 8
(0)

2Wj
(1) . ~22!

Then the conductivity~21! is equal to

s5
e2

3\2m
(

j
t jqj

25
2e2

3\2m2 (
j

qj
2

(
j 8

Wj j 8
(0)

2Wj
(1)

.

~23!

Such a diagonalization occurs in three physical situatio
The simplest one is the one when only one miniband is
cupied and

s5
e2

3\2m
t1q1

25
2e2q1

2

3\2m2

1

W11
(0)2W11

(1)
. ~24!

The second case is the case of systems with large co
lation lengthR@L. In such systems the intraband scatteri
is much stronger than the interband one and the off-diago
matrix elementsWj j 8 are small in comparison with the diag
onal ones~see Appendix A!. Then both matricesWj j 8

(0,1) are
almost diagonal,

Wj j 8
(0,1).Wj

(0,1)d j j 8 , ~25!

and the expression for the conductivity, Eq.~23!, reads

s.
2e2

3\2m2 (
j

qj
2

Wj
(0)2Wj

(1)
. ~26!

Such diagonalization of the matricesWj j 8
(0,1) ~25! at R@L can

often be an oversimplification~see Sec. IV!.
3-4
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The third situation with diagonalt j j 8
21 is the case of smal

qR. In this limit, the correlation function is a constant wi
zero first harmonic:

Wj j
(0)52W~qR→0!, Wj j

(1)50.

According to Eq.~17!,

Wj j 8~0!5
2\

m2L2
z~0!S p j

L D 2S p j 8

L D 2

~27!

and

s5
2e2

\

~L/p!4

2S~S11!~2S11!z~0! (
j

S Lqj

\ j D 2

. ~28!

Note that all our surface correlatorsz(s) are introduced in
such a way that in the long-wave limitz(q→0) they are,
except for the Lorentzian~10!, equal to each other,z(0)
52p l 2R2. This means that in this limit the conductivitie
~28! are the same irrespective of the shape of the correla

s5
2e2

\

1

4p

~L2/p2lR!2

S~S11!~2S11! (
j

S Lqj

\ j D 2

~29!

~cf. Ref. 16!.
In all other situations Eqs.~19! are not diagonal and

should be solved numerically.
The results for conductivity~mobility! also provide the

exponent in the expression for the localization lengthR that
describes localization caused by particle scattering by
dom wall inhomogeneities:13

R5L exp@pmSD/\#, ~30!

whereL is the mean free path and the diffusion coefficientD
is proportional to the conductivitys.

IV. RESULTS AND DISCUSSION

A. General comments

As is mentioned in the Introduction, the 2D conductivi
s of the film has the dimensionality of conductance and
described by a dimensionless functionf in Eq. ~2!. This func-
tion, in turn, depends on the relation between three len
scales: particle Fermi wavelengthLF51/qF , width of the
channelL, and correlation radius of the surface inhomoge
ities R. The fourth length parameterl is perturbative and
enters the conductivity as a coefficient:

s5
2e2

\

L2

l 2
f ~LF ,L,R!. ~31!

Note that we consider only the contribution from surfa
roughness and disregard bulk scattering. As a result, the
ductivity ~31! diverges in the limit of vanishing inhomoge
neities l→0 or R→`. The proper account of bulk
scattering14 eliminates this divergence.

The dimensionless functionf (LF ,L,R) depends only on
the ratio of these three lengths. Of three ratiosz5L/LF
15541
r:

n-

s
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n-

5qFL, x5R/LF5qFR, andy5R/L5x/z only two are inde-
pendent,x5yz. Which two of these ratios should be used
independent dimensionless variables depends on whe
one wants to display the dependence ofs on LF , L, or R.
The study of the dependence of the conductivity on fi
thickness,s(L), should be performed at constantLF andR.
This means thats(L) is best displayed by the functio
f L(z,x),

s~L !5
2e2

\

R2

l 2
f L~z,x5const!, ~32!

for various values ofx5R/LF .
Plots of the function f R(y) at constant values ofz

5qFL,

s~R!5
2e2

\

L2

l 2
f R~y,z5const!, ~33!

reflect the dependences(R). Similarly, plots of the function
f N(z) at constanty5R/L,

s~qF!5
2e2

\

L2

l 2
f N~z,y5const!, ~34!

characterize the dependence of conductivity on density
particlesN or the Fermi momentumqF .

Below we compare these dimensionless functions,f L(z),
f R(y), andf N(z) for various types of correlation functions i
wide ranges of parameters. Needless to say, the resultsx
→0 should coincide for all types of correlators exce
maybe, for the Lorentzian, since, by design, all the corre
tion functions are the same in this limit@see Eq.~29!#.

Curves in all figures below are labeled in a uniform w
by the type of surface correlator used in calculations. Cur
G correspond to Gaussian inhomogeneities~5!, CurvesL de-
scribe the surfaces with Lorentzian correlations~10!; curves
m1 , m5, andm9 give the results for the correlators~8! with
m50.1,0.5,0.9; and curvesl0 , l5, andl9 correspond to Eq.
~11! with l50,0.5,0.9. Note that correlatorm5 has the ex-
ponential power spectrum~9! and that correlatorl5 is actu-
ally the exponential correlator~7!.

B. Dependence on the film thickness

Figures 1 and 2 for the functionf L(z,x5const), Eq.~32!,
show the dependence of the conductivitys(L) for two dif-
ferent values ofR/LF , x51,10, for various types of the
correlation functions. The labeling of the curve
G,L,m1 ,m5 ,m9 ,l0 ,l5 ,l9 is explained at the end of the pre
vious subsection. The main feature of the curves—nam
their sawlike character—is well known. The sharp drops
cur when the number of the occupied minibands, Eq.~15!,
changes by 1, i.e., in the pointsz5L/LF5kp with integerk.
The only unexpected feature is a ‘‘wrong’’ periodicity of th
initial part of the Gaussian curveG at small values ofz for
x510 ~see the inset in Fig. 2!. This feature will be explained
later. The Lorentzian curveL is different from others: atx
510 the curve has already lost its QSE structure.
3-5
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At these relatively small values ofx, the curves for all
types of correlators have roughly the same shape though
exact values of the conductivity are different.~Curvesm5
andl5 are indistinguishable in both Figs. 1 and 2, and cur
G andm9 are indistinguishable in Fig. 1.! To underscore this
point, in Figs. 3 and 4 we plotted instead of the curvesf L(z)
the normalized curvesf L(z)/ f L(z5zmax) with the normaliza-
tion coefficients ensuring that the values of the normaliz
conductivity are equal to 1 at the highest values ofz in the
plot. Strikingly, for x51 ~Fig. 3! all the normalized curves
with these eight correlation functions lie within one bold lin
and areall indistinguishable with this resolution. For large
x, the difference is still insignificant: all the curves are co
pressed between curvesG and L. The only anomaly is the
loss of QSE structure by curveL.

The main conclusion here is that theshapeof the depen-
dences(L) at constantR and qF is not sensitive to and
cannot provide any information on the type of the correla
at not very large values ofR/LF . Since l is unknown and
enters the conductivity as a coefficient, the absolute value
s(L) cannot serve as a clue either: experimental data

FIG. 1. Functionf L(z,x5const), Eq.~32!, at x5R/LF51 for
various correlation functions. The labeling of the curves is
plained at the end of Sec. IV A. CurveG: Gaussian correlator~5!.
Curvesm1 ,m5 ,m9: power-law correlators~8! with m50.1,0.5,0.9.
CurveL: Lorentzian correlator. Curvesl0 ,l5 ,l9: power-law corr-
elators in momentum space~11! with l50,0.5,0.9 @l50.5 corre-
sponds to the exponential correlator in the coordinate space~7!#.
The sharp drops occur when the number of the occupied miniba
S, Eq. ~15!, changes by 1, i.e., in the pointsz5L/LF5kp with
integerk.

FIG. 2. The same as in Fig. 1 forx510. The labeling of the
curves is explained at the end of Sec. IV A.
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s(L) at moderateR/LF can be fitted by any type of the
correlator by a choice ofl. In this case, it is impossible to
make any conclusion on the type of correlation function fro
transport measurements and it does not matter what
relator to use in theoretical calculations. Meaningful analy
requires some beforehand information on the correlation
rameters. The only correlator that can be identified is
Lorentzian; however, this type of correlation is the lea
probable and might be ‘‘unphysical.’’

The situation changes dramatically at higherx5R/LF as
is shown in Figs. 5@function f L(z,x5400)] and Fig. 6@nor-
malized functionf L(z,x5400)/f L(z5zmax,x5400) # for the
same eight correlators~the labeling of the curves is explaine
in the end of Sec. IV A!.

We anticipated one feature: namely, the decrease in
amplitude of sawteeth with increasingx and even the disap
pearance of such teeth for the Gaussian correlator. The s
drops in conductivity in the points where the number of t

-

ds

FIG. 3. The same eight functionsf L(z,x51) as in Fig. 1 nor-
malized by their value atz5110, f L(z)/ f L(110). All eight normal-
ized curves are indistinguishable. The normalization coefficients
curve G, f L(110)52.43106; curve L, f L(110)51.393106; curve
m1 , f L(110)51.483107; curve m5 , f L(110)53.613106; curve
m9 , f L(110)52.423106; curve l0 , f L(110)52.693106; curve
l5 , f L(110)53.653106; curvel9 , f L(110)54.543106.

FIG. 4. The same eight functionsf L(z,x510) as in Fig. 2 nor-
malized by their value atz5110, f L(z)/ f L(110). All eight curves
lie between normalized curvesG andL and are barely distinguish
able. The normalization coefficients are, curveG, f L(110)53.82
3104; curve L, f L(110)51.173104; curve m1 , f L(110)51.48
3105; curve m5 , f L(110)52.593104; curve m9 , f L(110)51.32
3104; curve l0 , f L(110)56.953103; curve l5 , f L(110)52.61
3104; curvel9 , f L(110)55.73104.
3-6
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SURFACE ROUGHNESS AND SIZE EFFECTS IN . . . PHYSICAL REVIEW B65 155413
occupied minibandsS increases by 1 is explained by openin
of S newscattering channels associated with interband tr
sitions in and from this newly opened miniband. Without t
interband transitions, the increase ofS by 1 results not in a
sharp drop ins, but in an insignificant kink on the curv
s(L) as it is shown in the third reference of Ref. 18. T
interband transitions are described by the off-diagonal co
ponents of the matrix of transition probabilitiesWj j 8 . With
increasingR/LF , these off-diagonal~interband! transition
probabilities go to zero though with different rate for diffe
ent types of the correlation function. The rate of decreas
the interband transition probabilities as a function ofR/LF
for different correlation functions is discussed in Append
A. This rate is a good predictor for observing the sawli
shape ofs(L) . The fastest decrease happens in the cas
the Gaussian correlator; thus the curve for the Gaussian
relator should be the smoothest and should exhibit the sm
est traces of the sawteeth. Therefore, the visibility of
sawteeth on the experimental curve can be a clue to the f
of the correlation function.

What is completely unexpected is the appearance o
new type of oscillation structure ons(L) in a limited range

FIG. 5. Functionsf L(z,x5400) for the same eight types o
correlators as in Fig. 1.

FIG. 6. The same eight functionsf L(z,x5400) as in Fig. 5
normalized by their value atz5110, f L(z)/ f L(110). The normal-
ization coefficients are curveG, f L(110)51.843105; curve L,
f L(110)535.0; curve m1 , f L(110)58.783104; curve m5 ,
f L(110)51.253104; curve m9 , f L(110)55.353103; curve l0 ,
f L(110)53.16; curvel5 , f L(110)51.763102; curvel9 , f L(110)
53.213103.
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of z for the Gaussian and power-law correlators~curvesG
and m i in Figs. 5 and 6!. It looks as if there is a transition
between two distinct regimes with several sharp oscillatio
in the transition range. The effect looks even more striking
Fig. 6 for the normalized curves which, in contrast to Fig.
are plotted in a linear scale. This new type of QSE requi
an explanation.

These new oscillations are not related to abrupt chan
in the number of occupied minibandsS(z): the oscillations
are less sharp, have a much larger period, and, most im
tant, appear only in a limited range ofz where the number of
occupied minibandsS is already large. These new oscilla
tions are observed for the correlators for which the interba
transitions are the smallest and the sawlike structure
suppressed—namely, for the Gaussian and power-law co
lation functions. The power spectrum for these correlat
z(q) goes to zero exponentially at largeq. Then one would
expect that the off-diagonal~interband! transition probabili-
ties are exponentially small in comparison with intraba
scattering and that the conductivity can be well described
the ‘‘diagonal’’ approximation~26! that does not have an
oscillation feature. This turns out not to be the case.

The oscillations are indeed related to off-diagonal~inter-
band! scattering probabilitiesWj j 8 . A qualitative explanation
of the effect and an estimate of the peak positions are
following. Scattering by surface inhomogeneities chang
the tangential momentum byDq;1/R. According to the
momentum conservation law, this scattering can cause
interband transition j↔ j 11 only when qj2qj 115Dq
;1/R. If the miniband indexj is relatively small andqj

;1/lF, thenqj2qj 11;(qj
22qj 11

2 )lF/2. The energy con-
servation requires thatqj

22qj 11
2 5p2( j 11)2/L22p2 j 2/L2

;2p2 j /L2. The combination of these conservation laws d
fines the peak positionsL j , which correspond to the openin
of robust interband transitionsj↔ j 11 and which are given
by equationsL j

2;p2 jRlF. In dimensionless variables, thi
is equivalent to

zj;pAjx. ~35!

Accordingly, with increasing film thicknessL the transition
channel opens first for the electrons in the lowest miniba
e1(q) with j 51. Note, that these are the grazing electro
which are responsible for the dominant contribution to t
conductivity. Thus, the conductivity drops almost by half
the film thicknessz1;px1/2 where W12 becomes compa
rable to W11 and the effective cross-section doubles.
higher value ofL, z2;p(2p)1/2, a new channelW23 opens
to the electrons from the next minibandj 52 with px
52p/L and the conductivity drops again, and so on. T
only difference is that the contribution of the electrons fro
the higher minibands falls rapidly with an increase in t
band indexj and the drops in conductivitys~L!, which are
associated with the opening of new scattering channels
electrons from these minibands, become smaller and sma
The number of the visible peaks on the curves(L) and their
relative heights give a good visual estimate of the numbe
‘‘important’’ minibands and of their relative contribution t
the conductivity. With further increase in the film thicknes
when L becomes larger,L@R, the change of momentum
3-7
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Dg;1/R is sufficient to exciteall interband transitions and
the ordinary QSE with the saw teeth at the pointsz;p j is
restored.

The above explanation works for the films with the exp
nential decay of the power spectrum of inhomogeneities
which the size of inhomogeneitiesR is well-defined. In the
films with a non-exponential power spectrum of inhomog
neities, i.e, with a more uniform distribution of inhomogen
ities over the sizeR in momentum space, this new size effe
cannot be observed because the particles from all miniba
can always find the inohomogeneities of the right size t
ensure the interband transitions irrespective of what is
separation between the walls.

More accurate explanation is the following. The o
diagonalWj j 8 is a function of

n j j 85uqjR/\2qj 8R/\u5xuA12~p j /z!22A12~p j 8/z!2u

and rapidly decreases with increasingn j j 8 ~see Appendix A!.
In general, the off-diagonaln j j 8 is large at largeR ~or x)
while the diagonal elementsn j j 50. However, for largez
~largeS) some of the elementsn j j 8 with small j, which are
close to the main diagonal, could become small even
largex:

n j , j 11~ j 11!z/p!;
p2x

2z2
~2 j 11! ~36!

@ j changes from 1 to Int(z/p)]. Then at largez the transi-
tions j↔ j 11 can become noticeable and Eqs.~19! become
coupled. This coupling changes the solution of transp
equation and, therefore, conductivity. According to Eqs.~19!
the coupling between the minibandsj and j 11 becomes no-
ticeable,t j , j 11

21 ;t j j
21 , when

Wj , j 11
(0) ~x,z!;Wj j

(0)~x,z!2Wj j
(1)~x,z!. ~37!

At fixed x, Eq. ~37! can be considered as the equation for
values ofz5zj (x) at which one can observe the opening
transitionsj↔ j 11. The opening of such transition channe
is accompanied by drops in conductivity. Since for t
Gaussian and power-law correlators the interband trans
probabilitiesWj j 8 depend exponentially on parametersn j j 8 ,
these drops in conductivity are sharp and deep as illustr
in Figs. 5 and 6. Solutionszj (x) of Eqs.~37! are discussed in
Appendix B. Atz5z1(x), W12 is the first of transition prob-
abilities to acquire the ‘‘normal’’ order of magnitude. Atz
5z2(x), W23 becomes noticeable, thenW34, etc. The ampli-
tudes of the drops rapidly decrease with increasingj. In the
end, when several interband channels withj !z/p are open,
s(L) becomes smooth, but with a much lower slope than
its initial part. The growth of transition probabilities for tran
sitions j↔ j 12 does not result in new oscillations ins(L).
In the points z(x) where Wj , j 12 becomes large,Wj , j 12

(0)

;Wj j
(0)2Wj j

(1) , the statesj and j 12 are already strongly
coupled viaWj , j 11 andWj 11,j 12.

According to Appendix B, Eq.~B4!, the positions of the
drops for films with Gaussian surface inhomogeneities
similar to Eq.~35!:
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zj~x!'
p

2
A~2 j 11!x$ ln@xA2~111/j !#%21/4. ~38!

The valueszj (x5400)533.4,43.6,51.8,58.9, . . . agree well
with the positions of the conductivity drops on curve 1
Figs. 5 and 6.

For the surface with power-law correlations of inhomog
neities~8! the solution of Eq.~37! with logarithmic accuracy
@Appendix B, Eq.~B9!# also resembles Eq.~35!:

zj~x!5pA~2 j 11!x/4n,

n; ln„x~111/j !$2 ln@x~111/j !#%m/211/4
…. ~39!

This expression is barely sensitive tom. This almost com-
plete independence of the peak positions fromm can be
clearly seen in Fig. 6.

The difference between this new type of size effect a
the usual sawlike QSE is dramatic. The sawlike drops
conductivity for the usual QSE occur in the pointsz5kp
with integerk and are a direct consequence of the quanti
tion of momentum in thin films. The interband transitions a
not germane to the existence or positions of this QSE and
responsible only for the amplitude of the conductivity osc
lations. The drops in conductivity are equidistant with peri
p along thez axis, i.e., are equidistant as a function of fil
thickness. In contrast to this, the new QSE oscillations
Figs. 5 and 6 are not related directly to the quantization
momentum and are a consequence of the exponential o
ing of interband transitions between minibands with sm
quantum numbers at certain values of the film thickness.
transitions in and out of higher minibands remain su
pressed.~In some sense, the effect resembles magn
breakthrough between separated parts of the Fermi surfa
high magnetic fields.! The peaks are roughly equidistant
plotted againstz2; weak deviation from periodicity is due to
logarithmic terms in Eqs.~38! and ~39!. The period of the
new QSE is much larger than for the usual QSE. The la
period of oscillations can open the way to direct observat
of the QSE in transport measurements in metal films
which the usual QSE has atomic period and can hardly
observed. There is a strong possibility that the conductiv
oscillations reported in the last reference of Ref. 5 are ac
ally this new type of QSE.

The initial part of the curvesG, m i in Figs. 5 and 6 for
s(L) is described analytically by Eq.~26! with appropriate
values ofW from Appendix A. This curve is close to th
power laws}L (51a) ~smalla depends onx) and to experi-
mental data of the third reference of Ref. 11. After the reg
of new QSE oscillations, the curves are again smooth,
with a much smaller tangent. We do not have an analyt
description for this regime. The numerical approximation c
be done equally well by eithers5A1BL11b with small b
(b also depends onx) or a quadratic expressiona1bL
1cL2. This behavior explains the experimental data21 and
the last Ref. 5. As a result, the power-law dependence
s(L) is qualitatively different for ultrathin and more thicke
3-8
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SURFACE ROUGHNESS AND SIZE EFFECTS IN . . . PHYSICAL REVIEW B65 155413
films. This type of behavior is different from the earlier stu
ied behavior ofs(L) at smallx5qFR!1.3,13,16

The initiation of this new type of oscillations with a larg
period can be seen on the initial part of curveG in Fig. 2 for
x510. With growingz these new oscillations are overtake
by the standard QSE. The transition from standard to the
QSE is illustrated in Fig. 7 that contains normalized ‘‘curv
G’’ for the Gaussian inhomogeneities,f L(z,x5const)/f L(z
5157), forx51,10,25,55,100,200,400. It is clear from the
curves how the usual QSE is replaced by new oscillati
with increasingx. The ‘‘transitional’’ curve forx555 is es-
pecially interesting: it shows the new QSE at smallerz and a
restoration of the standard QSE at higherz. This restoration
occurs when a noticeable number of interband transiti
become open at higherz. It seems that such a restoratio
does not happen on curvesx.50. This impression is wrong
Such a restoration indeed occurs for curvesx5100,200,400,
but at values ofz that are much larger than those in th
figure. At very largex, all curvesf L(z,x5const) consist of
four parts: a rapid increase at smallz, region of new QSE
oscillations, smooth monotonic part, and region of relativ
smooth standard QSE oscillations at the largest valuesz.
With increasingx, the amplitude of new QSE oscillation
and the length of region separating new and old QSE
crease rapidly.

C. Dependence on the correlation radius

The dependence of the conductivity on the correlation
dius of surface inhomogeneities,s(R), is best illustrated by
the function f R(y,z5const), Eq.~33!. Since the number o
the occupied minibandsSdoes not depend on the correlatio
radius of inhomogeneities, the curvesf R(y) at constantz do
not exhibit the sawlike structure. Instead, the two main f
tures are the presence of the minimum inf R(y) and the
steplike structure that corresponds to the oscillations in F
5 and 6.

The scattering of fermions by surface inhomogeneitie
most effective atR/LF;1, i.e., aty;1/z. This leads to a

FIG. 7. Functionsf L(z,x5const) for Gaussian correlation o
surface inhomogeneities normalized by their value atz5157,
f L(z)/ f L(157). The values ofx and normalization coefficients ar
curve 1, x51, f (157)56.93106; curve 2, x510, f (157)59.9
3104; curve 3,x525, f (157)54.63104; curve 4,x555, f (157)
53.83104; curve 5, x5100, f (157)54.753104; curve 6, x
5200, f (157)59.13104; curve 7,x5400, f (157)52.33105.
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minimum of the conductivitys(R) at such values ofy. At
R/LF!1 the particle wavelength is much larger than t
size of surface inhomogeneities and the scattering is alm
specular and does not contribute to the formation of
mean free path. In the opposite limitR/LF@1 the walls are
flat on the particle length scale and surface scattering
does not limit the effective mean free path. Therefore, az
5const the conductivitys(R) for nondivergent correlators is
infinite in both limits y→0 and y→` with a minimum
aroundy;1/z. The curvesf R(y) close to this minimum are
plotted for different correlators in Fig. 8 (z564.4; the label-
ing of the curves is explained in the end of Sec. IV A!. It is
important that the position of the minimum, its width, an
even the order of magnitude of the functionf R(y) in the
minimum are roughly the same for all types of surface co
elators. This is, probably, the most universal feature of
system. The only correlator that does not display a w
defined minimum is Eq.~11! with l50 ~the Lorentzian in
momentum space, curvel0). This feature is related to the
logarithmic divergence of this correlator in ‘‘real’’ space
This feature is especially interesting because the surfa
with such inhomogeneities were observed in experiment2

The drops ins(L) at largez5zj (x), which are analyzed
in the previous section~Figs. 5 and 6!, correspond to the
points yj (z) on the curvesf R(y). The positions of these
pointsyj (z) are implicitly determined by Eqs.~38! and~39!
for the Gaussian and power-law correlations provided t
x5yz. These values ofy are far away to the right from the
minimum in the curvess(R) and cannot be presented in th
same figures. The feature that corresponds to the oscillat
from the previous section is clearly seen as a set of step
Fig. 9 for the same value ofz as in Fig. 8,z564.4 on curves
G andm5 for Gaussian and power-law inhomogeneities. F
the surfaces with the Gaussian inhomogeneities, the firs
terband transitionW12 becomes visible forz564.4 at y1
;25, the next one aty2;14, and so on. At these values ofy
one can see well-pronounced steps on the curveG in Fig. 9.
The same feature, though barely discernible, is also obse
for the power-law correlatorm5.

For comparison, curvesL, l0 , andl5 do not exhibit any
anomalies. Interestingly, the curve for the Lorentzian inh

FIG. 8. Functionf R(y,z564.4), Eq.~33!, near the minimum at
yz;1 for various surface correlators. The labeling of the curve
explained at the end of Sec. IV A.
3-9
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mogeneities is the only one that decreases with increasiy
after the initial increase at smally ~Fig. 8!. How this feature
is related to the peculiarities of the Lorentzian that have b
discussed in Sec. II is unclear. The curvel0 remains essen
tially flat.

D. Dependence on the Fermi momentum
and density of fermions

The dependence of the conductivitys on the density of
fermions,N, or their Fermi momentumqF is best displayed
by the functionf N(z) at constanty5R/L; see Eq.~34!. This
dependences(N) is similar to s(L). The functions(N)
exhibits a clear sawlike structure of the usual QSE at
very high y for all correlators. With increasingy, the saw-
teeth disappear first for the Gaussian correlatorG and then
for the power-law correlatorsm i , but persist for the power
law correlators in momentum spacel i . Instead, at largey
the functions f N(z,y5const) for Gaussian and power-la
inhomogeneities exhibit a new type of QSE oscillations sim
lar to that for f L(z,x5const) in Sec. IV B. The positions o
these oscillations can be found from Eqs.~38! and~39! after
the substitutionx5yz.

This effect is illustrated in Fig. 10~the labeling of the
curves is explained at the end of Sec. IV A!. The figure pre-

FIG. 9. The same functionsf R(y,z564), Eq.~33!, as in Fig. 8
at larger values ofz. The labeling of the curves is explained at th
end of Sec. IV A.

FIG. 10. Normalized function f N(z,y520), Eq. ~34!,
f N(z)/ f N(z5126), for three surface correlators. The normalizat
coefficients are curveG, f L(126)51.13109; curve m5 , f L(126)
54.53107; curvel5 , f L(126)51.43104.
15541
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sents functionsf N(z,y520), Eq. ~34!, for the Gaussian
~curveG) and power-law (m50.5, curvem5) correlators and
for the correlator with a power-law power spectruml
50.5, curvel5). To compensate for different orders of ma
nitude of the data for these correlators, the functions
normalized by their values atz5126, f N(z)/ f N(z5126).
Curve l5 exhibits a sawlike behavior typical to the usu
QSE with periodp along thez axis. CurvesG andm5 exhibit
new QSE oscillations with a much larger period.

E. Interwall correlation of inhomogeneities
and quantum size effect

Surprisingly, the possibility of interwall correlation of su
face inhomogeneities gives an interesting insight into
usual and new QSE’s and provides an additional proof
our explanation of QSE oscillations reported above. T
study of the effect of interwall correlation of inhomogen
ities has been initiated in Ref. 12 for Gaussian correlatio
Below we supplement those results for other types of surf
correlators with an emphasis on the new QSE.

To decrease the number of parameters, we assume th
in Ref. 12, the correlation functions of inhomogeneities
both walls z11 and z22 are given by the same functio
z11(s)5z22(s)5z(s). The structure of the interwall cor
relator of inhomogeneities,z12(s), is assumed to be the sam
as for the intrawall correlations with the same correlati
radiusR. However, the amplitudea of the interwall correla-
tions is different from the intrawall ones:

z115z225z~s!, z12~s!5az~s!. ~40!

To compare the effect of such interwall correlations for d
ferent classes of the functionz(s), we calculate the relative
change of conductivitys ~i.e., functionsf L , f R , f N) caused
by the introduction of such correlations:

f (a)5
f (a)2 f

f
, ~41!

where f (a) and f are the functionsf L,R,N calculated with and
without interwall correlations. An additional benefit is th
the functionsf (a) for all types of correlators are automat
cally normalized thus eliminating a difference by orders
magnitude between the functionsf L,R,N for different types of
correlation functions.

In the presence of such interwall correlations, the tran
tion probabilitiesWj j 8(q,q8), Eq. ~17!, become proportional
in accordance with Ref. 12, to

2@11a~21! j 1 j 8#z~ uqj2qj 8
8 u!. ~42!

The most interesting effects of the interwall correlations
related to the oscillating structure of the term witha in Eq.
~42!. If the interband transition probabilitiesWj Þ j 8(q,q8) are
large i.e., if z(uqj2qj 8

8 u) is not small for j 8Þ j , then the
contribution of the term witha in Eq. ~42! has a different
sign for differentWj j 8 depending on whetherj 1 j 8 is even or
3-10
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SURFACE ROUGHNESS AND SIZE EFFECTS IN . . . PHYSICAL REVIEW B65 155413
odd. This should result in an oscillating structure of the fun
tion f (a), Eq. ~41!, as a function of the number of occupie
minibandsS, i.e., as a function of film thicknessL ~the exis-
tence of such oscillations was first reported in Ref. 12
Gaussian inhomogeneities!. The period of such oscillation
should be equal to that for the standard QSE and their
plitude should decrease rapidly with increasingL. Since our
explanation of the standard QSE ties it to large interba
transitions, the oscillation nature of the functionf (a), Eq.
~41!, should exist in the same range of parameters as
standard QSE. In accordance with Sec. IV B, these osc
tions should be noticeable for the functionfL

(a)(z,x
5const) at smallx for all types of surface correlators. This
illustrated in Fig. 11 (x51) for the correlatorsG, L, l5 , m5.
The figure is plotted fora50.75. The similarity of the func-
tions fL

(0.75)(z,x51) is striking, but not surprising. The fla
part of all curves at smallz is explained below. At higher
values ofx, the interband transitions@off-diagonalWj j 8 , Eq.
~42!# become more and more suppressed. When the in
band transitions become negligible, the only nonzero sca
ing probabilities are diagonalWj j that are proportional to
2@11a#z(uqj2qj8u), Eq. ~42!. Sinceall Wj j are scaled by
the same factor 11a and the conductivity is inversely pro
portional to W, the functionfL

(a)(z) in the absence of the
interband transition becomes a constant:

fL
(a)~z!5

1

11a
21. ~43!

If a50.75, the value of this constant isfL
(0.75)(z)523/7.

Equation ~43! also describes the initial part of all curve
fL

(a)(z) for all values ofx at small z when only the first
miniband is occupied,S5 j 5 j 851. This explains all curves
in Fig. 11 having identical flat parts at smallz.

Figure 12 illustratesfL
(a)(z,x5const) atx5400 anda

50.75 for several correlators. At this value ofx, the expo-
nential correlatorl5, Eq. ~7!, exhibits, according to the re
sults and explanation of Sec. IV B, the usual QSE. Theref
the functionfL

(0.75)(z,x5400) for this correlator should hav

FIG. 11. Relative changefL
(0.75) , Eq. ~41!, of the function

f L(z,x51), Eq. ~32!, for the interwall correlation amplitude~40!,
a50.75, for various correlation functions of surface inhomoge
ities. The labeling of the curves is explained at the end of Sec. IV
All curves exhibit almost identical oscillations as it should be fo
well-developed usual QSE.
15541
-

r

-

d

he
a-

r-
r-

e,

an oscillation structure; this is clearly seen in Fig. 12. T
Gaussian and power-law correlatorsG andm5, according to
Sec. IV B, ensure the absence of interband transitions
small and moderatez where the functionfL

(0.75)523/7 in
Fig. 12. Our explanation for the new type of QSE in Se
IV B is an abrupt sequential appearance of noticeable in
band transitionsW12, W23, W34, etc., at certain values o
z5zj . Since the term witha in Eq. ~42! is negative for all
transitions j 85 j 61, one should observe spikes in condu
tivity and, therefore, in the functionfL

(a) , at z5zj . In some
sense, Fig. 12 provides the best illustration for our expla
tion of the new QSE.

Figure 12 also provides insight into the anomalous beh
ior of the conductivity for Lorentzian correlation of inhomo
geneities~10!, curve L. At z,30, the interband transition
are suppressed andfL

(0.75)523/7. At higherz, the interband
transitions become more noticeable and start increasing,
very slowly. Why the curve remains smooth when a su
cient number of transitions is already visible is still a puzz
A possible explanation is that oscillations should appear o
at very largeS ~or z) when their amplitude should be van
ishingly small.

V. SUMMARY AND CONCLUSIONS

In summary, we compared the behavior of conductiv
for various types of surface correlators in a wide range
parameters. The following conclusions can be import
when analyzing the experimental data or discussing theo
ical predictions.

~i! The rough shapes of the curves of the transport co
ficients are similar at small and moderateR for all types of
correlators though the orders of magnitude of the transp
coefficients and more fine details of the curves can be dif

-
.

FIG. 12. Relative changefL
(0.75) , Eq. ~41!, of the function

f L(z,x5400), Eq.~32!, for the interwall correlation amplitude~40!
a50.75 for four correlation functions of surface inhomogeneiti
The labeling of the curves is explained at the end of Sec. IV
Curvel5 exhibits oscillations in accordance with the usual QSE
curvel5 in Fig. 6. CurvesG, L, andm5 are flat at smallz, fL

(0.75)

523/7, Eq. ~43!. Oscillations on curvesG and m5 confirm the
explanation of the new QSE as an exponential appearance of
sitions j↔ j 11 at certain values ofz.
3-11
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ent. To make any definite conclusions from the rough sha
of the experimental curves, one should have at least s
idea of the type of the correlation function of surface inh
mogeneities and/or the value of the correlation radiusR and
the amplitude of inhomogeneitiesl. Sincel plays the role of
a scaling parameter, getting the values of parameters of
face inhomogeneities from experimental data on trans
without any additional information on the correlation of i
homogeneities could result in mistakes by orders of mag
tude. In the same way, the use of the wrong correlato
theoretical calculations could result in absolutely wrong p
dictions without evoking any warning signals from compa
son of the rough shapes of experimental and theore
curves.

~ii ! The most universal feature is the shape of the cur
and order of magnitude ofs(R) near the minimum at
R/LF;1. This minimum allows experimental evaluation
the correlation length of surface inhomogeneitiesR without
any assumptions about the type of the correlation functio

~iii ! The shape of the curvess(L), s(N), ands(R) be-
comes very sensitive to the type of surface correlator a
large correlation radius of inhomogeneities,R. Experimen-
tally, this is important for better quality films~see, for ex-
ample, in Ref. 22! in which STM and other usual method
are not well suited for the study of the long-range behav
of the thickness fluctuations. Here transport measurem
can be used as a good alternative for identification and an
sis of the thickness fluctuations.

~iv! The underlying reason is very high sensitivity of co
pling between quantum well states withlow quantum num-
bers to film thickness and the long-range behavior of
thickness fluctuations. This phenomenon is quite general
should lead to observable effects not only in metal films,
for other types of quantum wells such as semiconductor fi
or quantum wave guides.23

~v! The persistence of the sawlike dependence of
transport coefficients on the thickness of the film, Fermi m
mentum, or density of fermions should signal the long-ran
nature of the surface correlations in momentum spacez(q).
The observation of the sawlike structure forR.L is a dis-
tinct signature of the power-law decay of the power spec
density functionz(q), though, by itself, is insufficient to
make conclusions about the index in this power law. T
easy suppression of the sawlike behavior points at the e
nential decay of the power spectral density. The rate of
suppression is significantly different for simple exponen
and Gaussian decays ofz(q).

~vi! Thickness fluctuations with Gaussian correlations a
correlations with exponential power spectrum lead to a n
type of QSE ins(L), s(N), ands(R) for surface inhomo-
geneities of a relatively large sizeR. This new QSE produce
large oscillations ins(L) ands(N) and steps in dependenc
s(R). The spacing between these new QSE anomalies
vides important direct information on the correlation para
eters of inhomogeneities. The peaks are almost equidista
plotted againstz2.

~vii ! In contrast to the usual sawlike QSE, the new Q
oscillations are not related directly to the quantization
momentum and are a consequence of the exponential o
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ing of interband transitions between minibands with sm
quantum numbers at certain values of the film thickness
some sense, the effect is reminiscent of magnetic bre
through that describes the opening of transitions betw
disconnected parts of the Fermi surface.

~viii ! Large period of new QSE oscillations opens the w
to direct observation of the QSE in the conductivity of qua
tized metal films and may be responsible for experimen
data in the second reference of Ref. 5. An additional exp
mental signature should be the appearance of these new
oscillations only at relatively large values of the thickness
quantized metal films.

~ix! The Gaussian correlation of inhomogeneities affe
particle transport in a unique way. First, the values of
transport coefficient are, except for the smallest correlat
radii, larger than for other, slower correlators by orders
magnitude. This is explained by this correlator having t
shortest tails resulting in the least effective scattering. S
ond, this type of correlation does not exhibit a sawlike d
pendence of the transport coefficients on the system par
eters except for small correlation radiiR. Third, this type of
correlation of the surface inhomogeneities leads to
above-mentioned new type of large-scale oscillations of
transport coefficients. The combination of these features
make the Gaussian correlator readily identifiable in transp
experiments.

~x! The Lorentzian correlation of inhomogeneities in co
figuration space is also readily identifiable by several abn
mal features. The combination of these features could
another manifestation of an ‘‘unphysical’’ nature of this co
relator. If possible, this correlator should be avoided in th
oretical and computational models. A power-law correla
~8! with small indexm can serve as a good replacement
the calculations.

~xi! The results explain the observed difference in pow
law regimes of the thickness dependence of the conducti
s(L) between ultrathin and more thicker films.

~xii ! The relative contribution of the interwall correlatio
of surface inhomogeneities strongly depends on the type
QSE. For the usual QSE, the contribution of the interw
correlations is a rapidly decaying oscillation function of t
film thickness. For a QSE of the new type, this contributi
is constant in a wide range of small and moderate thi
nesses, and becomes an oscillating function with a big pe
in a limited range of large thicknesses.
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APPENDIX A: TRANSITION PROBABILITIES

Various correlation functions from Sec. II allow differen
degrees of analytical calculations of the scattering probab
ties. The angular harmonics of the correlation functi
z(uqÀq8u) in the transport equation~19! are defined as

z~ uqÀq8u!5
1

2
z (0)~q,q8!1(

s51

`

z (s)~q,q8!cos~sx!,
3-12
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z (s)5
1

pE0

2p

z~x!cos~sx!dx, ~A1!

wherex is the angle between the 2D vectorsq andq8.
The harmonics for the Gaussian correlator~5! are

z (0)~qj ,qj 8!54p l 2R2@e2QQ8I 0~QQ8!#e2(Q2Q8)2/2,

z (1)~qj ,qj 8!54p l 2R2@e2QQ8I 1~QQ8!#e2(Q2Q8)2/2,
~A2!

where Q5qjR, Q85qj 8R. Note, that in Refs. 12–14 we
used equivalent expressions with hypergeometric functi
instead of modified Bessel functions. Expressions in squ
brackets in Eqs.~A1! are smooth functions ofQ andQ8. The
exponential coefficients exp@2(Q2Q8)2/2#, on the other
hand, are rapidly going to zero for largeqR if qjÞqj 8 . This
explains why the off-diagonal scattering probabilitiesWj j 8
are much smaller than the diagonal ones at largeqR. Such a
drastic difference between interband and intraband scatte
probabilities is a unique feature of the Gaussian correla
The physical consequences are discussed in Sec. IV.

For the exponential correlator~7! the harmonics are

z (0)~qj ,qj 8!5
8l 2R2E~V!

@11~Q2Q8!2#A11~Q1Q8!2
,

z (1)~qj ,qj 8!

5
4l 2R2

QQ8

~11Q21Q82!E~V!2@11~Q2Q8!2#K~V!

@11~Q2Q8!2#A11~Q1Q8!2
,

V52AQQ8/@11~Q1Q8!2#, ~A3!

whereE andK are complete elliptic integrals. Here the dia
onal and off-diagonal transition probabilities~probabilities of
the intraband and interband scattering! differ mainly by the
terms 11(Q2Q8)2 in the denominator that are insignifica
in comparison with the exponential factors for the Gauss
correlator above. The physical consequences are discuss
Sec. IV.

The power-law~8! correlation functions correspond to

z (0)54l 2R2 (
m50

`

~m1m!
Km1m~Qmax!

Qmax
m

I m1m~Qmin!

Qmin
m

3E
0

2p

Cm
m~cosf!@Q21Q8222QQ8cosf#mdf,

z (1)54l 2R2 (
m50

`

~m1m!
Km1m~Qmax!

Qmax
m

3
I m1m~Qmin!

Qmin
m E

0

2p

Cm
m~cosf!

3@Q21Q8222QQ8cosf#mcosf df, ~A4!
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whereCm
m are the ultraspherical~Gegenbauer! polynomials,

and Qmax5max(Q,Q8) and Qmin5min(Q,Q8). The off-
diagonal transition probabilities disappear exponentially
large uQ2Q8u, approximately as (uQ2Q8u)m21/2exp(2uQ
2Q8u), i.e., much slower than for the Gaussian correla
~A2! but faster than for the correlator~A3!.

The integrals in Eqs.~8! can be simplified for the Lorent
zian correlator:

z (0)~Q,Q8!58p l 2RK0~Qmax!I 0~Qmin!,

z (1)~Q,Q8!54p l 2RK1~Qmax!I 1~Qmin!. ~A5!

Note that the functionK0(Q) diverges logarithmically atQ
→0. This divergence is discussed in Secs. II and IV.

The expressions for the harmonics~A4! can also be sim-
plified for the Staras correlator,m51, when Cn

1(cosf)
5sin@(n11)f#/sinf,

E
0

2p

Cm
1 ~cosf!df5@0, m52k11; 2p, m52k#,

E
0

2p

Cm
1 ~cosf!cosf df5@0, m52k; 2p, m52k

11#,

and the harmonics~A4! reduce to the rapidly convergin
sums of the Bessel functions with alternating coefficien
For all other power-law correlators with different values ofm
the integration should be performed numerically.

The last group of correlators involves power-law behav
in momentum space, Eq.~11!. This group includes the
Lorentzian in momentum spacel50 that was observed in
Ref. 2 and the exponential correlator~7!, ~A3! at l51/2. In
general, the angular harmonics are

z (0)5
4p l 2R2

@11~Q22Q82!212~Q21Q82!# (11l)/2
Pl~V!,

z (1)5
4p l 2R2/l

@11~Q22Q82!212~Q21Q82!# (11l)/2
Pl

1~V!,

V5~11Q21Q82!/A11~Q22Q82!212~Q21Q82!
~A6!

where Pl
n(V) are the associated Legendre functions of

first kind. Note that the argumentV of the Legendre
functions in our expressions is larger than 1. One should
cautious when doing calculations with expressions~A6!:
some of the handbooks~and software packages, e.g
MATHEMATICA ! do not use the same normalization for Le
endre polynomials and Legendre functions, i.e., for functio
Pl

n(V) with integer and nonintegerl.
In the case of the Lorentzian in momentum space,l50,

z ik~s!5 l 2K0~s/R!, z~Q!5
2p l 2R2

11~QR!2
, ~A7!
3-13
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the harmonics

z (0)~qj ,qj 8!5
4p l 2R2

A11~Q22Q82!212~Q21Q82!
,

z (1)~qj ,qj 8!

5
8p l 2R2QQ8

A11~Q22Q82!212~Q21Q82!

3
1

11Q21Q821A11~Q22Q82!212~Q21Q82!
.

~A8!

Note that this correlator diverges in real space ats→0.

APPENDIX B: POSITIONS OF NEW QSE OSCILLATIONS

The peak positions are determined by the condition t
the absolute value of the diagonal and the first off-diago
matrix elements in transport equation~19! become compa-
rable:

1/t j , j 11;1/t j j .

Rewriting this condition via transition probabilitie
Wj j 8

(0,1)(q,q8) we get

@Wj j
(0)~x,z!2Wj j

(1)~x,z!#1 (
j 8Þ j

Wj , j 8
(0)

~x,z!;Wj , j 11
(1) ~x,z!,

~B1!

where Wj j 8
(0,1)(qj ,qj 8) are the zeroth and first harmonics

W(qjÀqj 8) over the angleqj q̂j 8 that can be expressed e
plicitly via the surface correlation functions@see Eq.~17! and
Appendix A#. For largeqjR, the off-diagonal scattering prob
abilities Wj j 8 are exponentially suppressed for Gaussian
power-law inhomogeneities, Eqs.~A2! and ~A4!: Wj j

(0)

;Wj j
(1)@Wj , j 11

(0) ;Wj , j 11
(1) . With logarithmic accuracy, the

condition ~B1! corresponds to the equation

Wj j
(0)~x,z!2Wj j

(1)~x,z!5Wj , j 11
(0) ~x,z!. ~B2!

Taking into consideration the asymptotic behavior
modified Bessel functions in Eq.~A2! for the Gaussian cor
relator, Eq.~B2! can be reduced to

j 2

2Qj
3

5
~ j 11!2

AQjQj 11

expF2
1

2
~Qj2Qj 11!2G , ~B3!

whereQj5xA12(p j /z)2. When z/p j @1, we can putQj
'Qj 11'x in the denominator. The exponent should
evaluated more carefully:Qj2Qj 11'xp2(2 j 11)/2z2.
Then Eq.~B3! yields the following values of the peak pos
tions:
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zj~x!5
p

2

Ax~2 j 11!

F lnS xA2
11 j

j D G1/4. ~B4!

Sincex5yz, these peak positionszj (x) can also be used to
get the peak positions for the conductivity at fixedy, zj (y) as
a solution of the following algebraic equation:

zj~y!5
p2

4

y~2 j 11!

F lnS zj~y!yA2
11 j

j D G1/2. ~B5!

Similar but more cumbersome calculations, can be p
formed for the power-law correlators~8! . For example, if
m51/2, Eq.~B2! reads

4 j 2E
0

p/2

exp~22Qjsint !sin2t dt

52~ j 11!2E
0

p/2

exp~2An214QjQj 11sin2t !dt,

~B6!

where we introducedn[n j , j 115Qj2Qj 11. For largeQj ,
an asymptotic estimate for the integral in the left-hand sid
1/4Qj

3 . A rough asymptotic estimate for the integral in th
right-hand side of the equation is

E
0

1

exp~2An214QjQj 11t2!
dt

A12t2

'
1

2AQjQj 11
E

0

2AQjQj 11
exp~2An21y2!dy.

In order to estimate this integral, we can substituteAn21y2

by

An21y2→H n, for y,n,

y, for y.n.

Then

1

2Qj
E

0

`

exp~2An21y2!dy'
1

2Qj
e2n~n11!.

This leads to the following estimate for the peak position

zj~x!5pAx~2 j 11!

2n j
, ~B7!

wheren j is the root of the transcendental equation

n j52 lnAj1 ln~11n j !, Aj[x~111/j !.

The last equation can be solved by iterations:
3-14
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n5n (0)1n (1)1n (2)1•••,

n (0)52 lnA, n (1)5 ln@2 lnA11#, . . . .

Finally, with logarithmic accuracy, the solution of Eq
~B6! for the positions of peaks becomes

zj5
p

2
A x~2 j 11!

ln$xAln@x~111/j !#~111/j !%
. ~B8!

Similar asymptotic estimates for the power-law correlat
with arbitrarym yield
ce

d

s.
.

e

tt.

ys

15541
s

zj5
p

2
A x~2 j 11!

ln@Aj~2 lnAj !
m/211/4#

,

Aj5x
11 j

j
A 2

G~m15/2!
. ~B9!

It is clear from Eq.~B9! that the dependence of the pea
positions onm is extremely weak.
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