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Localization and diffusion parameters are calculated for particles adsorbed
over inhomogeneous substrates for discrete and quasicontinuous spectra of
the adsorbed states. The results are expressed via the angular harmonics of
the correlation function of surface roughness. The problem is solved analyt-
ically in the limiting cases of longwave particles and large correlation radii
of surface inhomogeneities. Elsewhere, the problem is solved numerically for
Gaussian correlation of inhomogeneities. Applications to electrons on helium
films, mobile adsorbed hydrogen atoms and molecules, ultra-cold neutrons in
gravitational or magnetic field, etc., are discussed.

PACS numbers 61.12.-q, 73.20.Fz, 67.90.+Z

Scattering of 2D particles by random inhomogeneities, including the
boundary ones, results in localization.1-7 Often, instead of a random po-
tential one encounters a problem with a random boundary condition, e.g.,
C = 0 on a wall x = E(s) with random inhomogeneities E ( y , z ] , (x) = 0.
Though this problem is almost the same as for the random bulk potential,
the explicit expressions for the localization parameters via the wall profile
are unknown. This is especially important in a weak localization limit with
an exponentially large localization length for which even a small uncertainty
in the index may change the result by orders of magnitude. Another feature
of this problem is that the correlation radius R of surface inhomogeneities
can be large while the analog of this parameter for bulk impurities is usually
small. Recently we developed a formalism8,9 for exact mapping of the prob-
lems with random boundaries onto problems with perfect boundaries and
randomly distorted bulk by using a Migdal-like canonical transformation
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that flattens the boundary and, in the process, distorts the bulk.
Below this formalism is applied to a quantum ball E = p2/2m bouncing

from a static random rough wall x = E(s), (x) = 0 in the field mgx. The
motion in x direction is finite with discrete spectrum Ej and is continuous
along the wall, Ejq = Ej + g2/2m. This formulation is typical for ultra-
cold neutrons trapped in gravitational field10 or electrons on helium surface
in electric field. If the origin of adsorbed states Ej is different, such as for
hydrogen particles adsorbed on helium surface, the results require only minor
modifications. Further modifications are required to account for interwall
interference9 in systems with two or more walls.

The problem is described by five parameters with dimensionality of
length: the average height and correlation radius of surface inhomogeneities

-1/3

l and R, size of the first bound state L = ( 2 m 2 g ) (Ej = E j / m g L ) , particle
wavelength A, and the amplitude H ~ L3/L2 of jumps in the field mg. The
quantum effects are characterized by a = ( H R 2 / L 3 ) 1 / 2 — R/L and by the
number of minibands S ~ ( H / L ) 3 / 2 accessible for a particle with the energy
ejq = E. Of course, in the quasiclassical regime H > L, S > 1 one cannot
expect localization. The perturbative restriction on the results are l < R, H;
the value of B = R/L is arbitrary.

We start from the diffusion coefficient D and mean free path L = 2 D / v
for particles with energy E, and then get the localization length R1,2

Among several feasible types of surface correlators,11,12

for numerical applications we assume that the correlations are Gaussian,

The coordinate transformation X = x — E(s), Y = y, Z = z makes
the wall flat, X = 0. In conjugate momentum variables, the Hamiltonian
H0 (p,x) = p2/2m + mgx acquires random inhomogeneous part

The eigenvalues Ej are given by the zeroes of the unperturbed Airy (wave)
functions, P ( — E j ) = 0. The transition probabilities between the states Ejq

are given by the squares of the matrix elements of V and, after averaging
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over the inhomogeneities E, are expressed via the surface correlator C(q'-q).
In the end, the transport equation for particle diffusion in density gradient
Nn(0)

j(q) acquires a simple form applicable to a wide range of problems with
scattering by rough boundaries:

The transport equation can be solved analytically in three limiting cases.
If 1. 53 < a/B = qL < 2.02, only the first miniband is accessible, S=1, and

(the last expression describes Gaussian correlations (3)). The localization
can be observed for B = R/L > ( R / l ) 1 / 3 . Together with the perturbation
condition l < L,R (in this case H ~ L), this requires l/L < L/R.

For long-wave particles a = R/L < 1 (quantum reflection), the transi-
tion probabilities are constants with the zero first harmonic, and

or, for Gaussian correlations (the last equations is quasiclassical),

If a/B2 ~ L 2 /RL < 1, the interband transitions are suppressed:

or, for Gaussian correlations,

(quasiclassical expressions in (7),(9) correspond to j, S, a2/B3 > 1 when
ej = [(3P/2)(j + 1/2)]2/3 and S = (2/3P)(a/B)3). Elsewhere, the transport
equation should be solved numerically.
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Fig. 1. The localization exponent P (1) as a function of a = R/L at l = R,
B = R/L = 0.1

To have reasonable localization lengths, the exponent P in Eq.(1) should

not be large, (p < 20. P grows with growing a = ( H R 2 / L 3 ) 1 / 2 and decreasing
B = R/L. Thus, one should decrease the particle energy E = mgH and the
correlation radius R, and increase the amplitude of inhomogeneities l and
the force mg. If B = R/L < H/L, the minimal localization length requires
l ~ R < H, while for B > H/L the best regime is l ~ H < R. Relatively
small values of p often correspond to the range a/B2 < 1 (8), (9) in which
the quasiclassical expression p (a/B2 < 1) ~ 24.4S8/3RL/l2 is the most
convenient one for a crude estimate of D and p. If H >> L, it gives p > 1
and the localization is not feasible. To observe localization, one should cool
particles into the lowest miniband e1q (5).

The singularities in transport in the points when the number of acces-
sible minibands S changes by 1 are distinct at small B as in Figure 1 for
B = 0.1. The appearance and acuteness of singularities are similar to those
for transport in rough films.8,9

One of the most interesting applications is the trapped system of ultra-
cold neutrons13 bouncing in gravitational field for which L = 5.86X 10-4 cm,
a = 1.6 x 103Rv (R in cm, v = S2E/m - in cm/s). The neutrons can be
cooled down to velocity v = 100 cm/s (H ~ 5 cm) when H > l, R > L,
and S > 1. Thus the anomalies in neutron count in experiment13 cannot be
explained by Anderson localization of neutrons. As it is clear from Figure
2, the localization can be observed only when the neutrons are condensed
into the lowest miniband with velocities v < 2 cm/s (or H < 2 x 10-3 cm)
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Fig. 2. The localization exponent P ( v ) (1) for neutrons at l = L = R

while the parameters of inhomogeneities l, R are comparable to L. Another
option is to use the gradient of the magnetic field guVB instead of gravity
[1 T/cm is equivalent to g* = 58g]. This raises the threshold velocity v by
the factor (g* /g ) 1 / 3 ~ 4, but results in decrease of L and requires scaling
down of inhomogeneities.

Electrons over helium in electric field £ are different in two aspects.14,15

First, the ripplon-induced inhomogeneities are not static (for ripplons at
T ~ 1 K the values R ~ 20 A, l ~ 0.8 A). A better choice is the electron
system over the helium film on the surface of inhomogeneous substrate sim-
ilar to the quasi-1D electron-helium system in.16 The second difference is
that the electron in strong field £ creates a dimple on helium. This makes the
effective mass dependent on £ and leads, in large fields, to auto-localization
of electrons in ripplonic polarons thus restricting the application of our equa-
tions to relatively low fields. If £ — 103 V/cm, mg should be replaced by
eE = 1.6 x 10-9 erg/cm, L = (2meE)-1/3 = 1.4 x 10-6 cm, while the scale of
inhomogeneities in setup16 is large, l ~ R ~ 1 um, Then the 2D localization
of electrons requires either a decrease in scale of inhomogeneities or a de-
crease in field with a corresponding decrease in electron velocity to v < 106

cm/5 . It is not clear whether this is feasible.
More promising are the hydrogen atoms or molecules adsorbed on he-

lium surface (e0 ~ 1 K, L ~ 5 A) at temperatures above condensation17,18

for which one can use the same transport equation. The exponent P,



(cf. Eq.(5)) depends on momentum q in the same way as p ( v ) in Figure 2
for neutrons with mv2/2 = E0 + q2/2m. At T ~ 1 K, the average amplitude
and wavelength of capillary waves w2 = zk3/R + gk with z/p ~ 2.5 cm3/s2

provide l ~ 0.8 A and R ~ 20 A. The coefficient in Eq.(10) is approximately
0.3, and localization can be observed for particles with qR < 1.5.

Ripplon-induced localization is different from the static estimates in
one important aspect. The collision operator contains the perturbation as
(|V j j '(q,q')|2)e D (ejq — Ej'q'). The energy D-function is, to a large extent,

the key to the simplicity of the transport equation. In a non-static case,
the D-function is different, D(ejq - Ej'q' - w), and the transport equation for
a quantum bouncing ball problem with a dynamic wall becomes extremely
complicated9 when w is comparable to the transition probability W j j ' ( q , q').

In summary, we calculated diffusion and localization parameters for a
quantum bouncing ball with static random rough wall. In three limiting
cases the results are analytical an can be applied to any surface correlator.
Elsewhere, we performed numerical calculations for Gaussian correlations.
This work was supported by NSF grants DMR-9412769 and DMR-9705304.
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