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We discuss the effect of the zero-temperature transverse attenuation in spin-
polarized Fermi liquids on related phenomena in helium and electron sys-
tems. In helium Fermi liquids, the magnetic dipole-dipole interaction leads
to a transfer of transverse attenuation to longitudinal processes resulting in
finite sound attenuation and effective viscosity even at zero temperature. In
Heisenberg ferromagnetic metals, this Fermi-liquid effect affects the atten-
uation of ferromagnetic magnons as a result of exchange coupling between
spins of ferromagnetic and conduction electrons.

1. INTRODUCTION

In contrast to all other dissipative processes in pure Fermi liquids, the
transverse relaxation time TJ and transverse spin diffusion D± in spin-
polarized Fermi liquids do not increase with decreasing temperature as 1/T2,
but saturate and remain finite at T — 0. Longitudinal processes in exchange
systems, i.e. processes which do not change the direction of polarization, do
not exhibit any zero-temperature attenuation irrespective of spin polariza-
tion. The low-temperature saturation of transverse diffusion and relaxation
was predicted on the basis of conservation law and symmetry arguments1,2

and confirmed by transport calculations for degenerate Fermi gases3-5 and
dense Fermi liquids.6 The effect was observed in low-temperature spin dy-
namics experiments in liquid 3He |7 and 3He | — 4He mixtures.8

The transverse zero-temperature relaxation time is TJ (T = 0) ~
( N v F d 2 ) ~ (TF/BH)2 for fermions with Fermi velocity (temperature) VF
(TF), magnetic moment B, cross-section d2, and density N. Since the usual
relaxation time is rt (H = 0) ~ ( N v F d 2 ) - 1 ( T F / T ) 2 , the transition from the
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temperature-driven to polarization-driven attenuation occurs at T ~ BH
when the space between the spin-up and spin-down Fermi spheres is compa-
rable to the thermal smearing of the Fermi surface.

The zero-temperature attenuation can be described by a pole contribu-
tion in the mean field, and is, in this sense, similar to the Landau damping
in plasma.5 This pole term does not contribute to other observables outside
transverse dynamics for which spin polarization opens phase space between
the spin-up and spin-down Fermi spheres necessary for collisionless decay
of magnons with finite k at T = 0. By now, the existence of the zero-
temperature attenuation in spin-polarized Fermi liquids is well established.

Transverse spin dynamics is coupled to other processes thus transferring
temperature saturation. In helium, the magnetic dipole and non-linear cou-
plings transfer the zero-temperature attenuation into longitudinal channels.
In Heisenberg ferromagnets, the zero-temperature transverse attenuation af-
fects ferromagnetic properties via exchange spin coupling of ferromagnetic
and conduction electrons.

2. DIPOLE COUPLING TO LONGITUDINA DYNAMICS IN
HELIUM

The transverse attenuation is the sole zero-temperature relaxation in
pure exchange Fermi liquids. It can be transferred to longitudinal channels by
magnetic dipole or non-linear coupling. We will study the former though the
latter also leads to interesting effects especially near the Castaing instability.

There are two dipole mechanisms. The magnetic dipole interaction
permits longitudinal spin-flip processes and leads at T = 0 to the finite
longitudinal collision integral with dipole vertex. Second, the dipole interac-
tion couples longitudinal modes to attenuating spin waves. We will consider
the first mechanism. The second one, which has been described in Ref.,9 is
weaker except for high polarization.

The resulting longitudinal attenuation ref f is smaller than TJ (T = 0)

by a factor (Ed/TF)2 where Ed = B2Z2m3/2TF3/2/h3, and Z is the micro-
scopic parameter in the quasiparticle pole term. The transition from the
temperature-driven to this effective attenuation occurs in sub-nK region,
well below the saturation of transverse spin diffusion. This effect slightly re-
sembles the temperature saturation of the dipole relaxation time T1.10 For
3He | this temperature is below the superfluid transition when the theory of
normal Fermi liquids cannot be applied directly. The results can be applied,
without modifications, to 3He | — 4He mixtures.

In order to avoid separate calculations for various modes in 3He | and
3He | — 4He, we calculated the sound attenuation in a generic polarized
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Fig. 1. I(s, x) as a function of x = cos0 for = 2; 3; 3.47; 5

Fermi liquid at T = 0 and extracted the effective mode-independent re-
laxation time re f f and viscosity ne f f .These parameters can be used in
conjunction with standard hydrodynamic or hf description2,11 of 3He | and
3He | — 4He. Although the dipole interaction in helium is weak and the
effective time re f f is long, it provides the zero-temperature cut-off for longi-
tudinal relaxation and transport. Since helium does not have any impurities,
these limiting cut-offs can be observed at ultra-low temperatures.

The dipole interaction enters the non-vanishing at T = 0 collision inte-
gral via the scattering probability

The resulting sound attenuation is (for more details see12)

where svF = w/k is the sound velocity, 0 is the angle between H and k, and
the function I(s cos0) is plotted in Figure 1.

The most important difference between (1) and the attenuation resulting
from the coupling between sound and spin waves is the k2-dependence of
the attenuation9 originating from the k • v factor in the coupling coefficient
at kvF < no. At higher frequencies, the factor (kvF)2 in Ref.9 should be
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replaced by the square of the Larmor frequency n0. At very high frequencies,
the attenuation can be obtained by the method of Refs.4,12 The dipole
anisotropy of the fluid dynamics in spin-polarized systems is not surprising.

The sound attenuation provides the relaxation time and viscosity:

3. ATTENUATION OF MAGNONS IN HISENBERG
FERROMAGNETIC METALS

The transverse zero-temperature dissipation is inherent to Fermi liquids
and, in its original form, does not exist in Heisenberg system of localized
spins. We will show that this unique Fermi-liquid mechanism still leads to
residual attenuation of magnons in pure ferromagnetic metals. Note, that we
are interested not in itinerant magnetism, which always exhibits Fermi-liquid
features, but in magnetic system of localized electrons.

The effect is based on exchange coupling J1S. o between spins § and 5
of ferromagnetic (e.g., 3d) and conduction (e.g., 4s) electrons which leads to
a small polarization of conduction electrons of the order of J1 (S) /TF. Po-
larization of conduction electrons ensures the propagation of Silin spin waves
in this system with finite attenuation T± (T = 0) ~ ( N v F d 2 ) - 1 ( T F / J 1 (S))2.
The exchange coupling between these attenuating Silin spin waves and fer-
romagnetic Heisenberg magnons transfers the zero-temperature attenuation
to the magnon system. By the order of magnitude T£* ~ rj (J1/J)2 where
J is the Heisenberg exchange between localized electrons. The competing
processes are, obviously, scattering on impurities and spin-lattice processes
studied long ago (see, e.g.,14). The former processes are small in pure metals,
while the latter are suppressed at low temperatures.

The Hamiltonians of conduction and localized electrons have the form

The parameters for conduction electrons already contain the Fermi-liquid
renormalization, B1e = Be/ (l + F0(a)), J1 = J0/ (1 + F0(a)). The averages



Zero-Temperature Relaxation 391

The Fermi-liquid term for conduction electrons is

The equation of motion for the circular component of magnetization Sr+ is

where n|, | are the equilibrium distribution functions fo spin-up and spin-
down particles, S+ = S(e - e0|) + S(e - e0|).

We look for the solution in the form Sa+ = n0 + n1k.v, Ss+ = S0.
Then the eigenvalue equation reduces to a set of three coupled equations,

where the Larmor frequencies for conduction and localized electrons are
hno = 2(Be H + 1/2J0 (Sz)) and hw0 = (B'H + 1/2J0 <oz,>).

In ferromagnetic metals J0 (Sz) > J0 (az) , b H , and no > W0 If also
B1H > J (Sz) k2a2, the residual attenuation of ferromagnetic magnons is

In lower fields the attenuation is proportional to k4 as in Ref.15

The scale of the effect is determined by the exchange J0 between spins of
ferromagnetic and conduction electrons. In metals, the bare s — d exchange
t2 ~ 1 eV is weakened by screening by one or two orders of magnitude, but
is enhanced by the Kondo-like logarithmic renormalization. The transverse
exchange field for conduction electrons is16
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If the polarization of conduction electrons is low, the direct interaction t1

disappears from the results. The integral is typical for the theory of metals
and diverges logarithmically. The usual cut-off provides the logarithmic
renormalization enhancement of the bare exchange t2:

where vF is the density of states on the Fermi surface. As a result, J0

can reach hundreds of K, and the polarization of conduction electrons can
exceed one per cent. Then r± for conduction electrons can become shorter
than 10–10 sec, and r*L can reach 10-7 sec.
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