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We discuss the effect of zero-temperature attenuation, which has been 
recently observed in spin dynamics of spin-polarized Fermi liquids, on other 
Fermi-liquid processes. The transfer of" this attenuation mechanism J?om 
transverse spin dynamics to longitudinal processes can be caused by the 
magnetic dipole interaction, namely, by the direct dipole processes and the 
dipole coupling between the transverse spin dynamics and the longitudinal 
transport and relaxation processes. We calculated the zero-temperature sound 
attenuation in spin-polarized Fermi liquids, corrections to the threshold of 
spin-wave ( Castaing) instability, and the eJ]'ective zero-temperature viscosity 
and longitudinal relaxation time in low- and high-frequency regbnes. 

1. I N T R O D U C T I O N  

One of the recent developments in physics of spin-polarized Fermi 
liquids was a prediction and observation of peculiar zero-temperature 
attenuation in transverse spin dynamics. In contrast to all other dissipative 
processes in pure Fermi liquids, the transverse relaxation time r• and the 
coefficient of transverse spin diffusion D j_ do not increase with decreasing 
temperature as l iT  2, but saturate and remain finite even at T ~  0. By 
transverse dynamics we mean the dynamics of transverse components of 
magnetization perpendicular to its equilibrium direction; the transverse 
processes are excited by inhomogeneous tipping of spins in NMR 
experiments. Longitudinal processes, i.e., processes which do not change 
the direction of polarization, do not exhibit any anomalous zero-tem- 
perature attenuation mechanisms in exchange systems irrespective of spin 
polarization. 

The existence of the zero-temperature attenuation in transverse 
dynamics, which was predicted on the basis of general conservation law 
and symmetry arguments ~ (see also review2), was recently confirmed by 
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direct transport calculations for degenerate Fermi gases 3 5 and, later, dense 
Fermi liquids. (' This temperature saturation of transverse diffusion and 
relaxation parameters has been observed in the low-temperature spin 
dynamics experiments in spin-polarized liquid 3He T 7 and 3HeT-4He 
mixtures. ~ At present, the existence of this effect is well established. 

The reason tbr such an unusual behavior is that the transverse relaxa- 
tion and spin diffusion at low temperatures are determined by the colli- 
sionless decay of magnons. Spin polarization of the Fermi liquid opens the 
phase space between spin-up and spin-down Fermi spheres allowing the 
decay processes tbr magnons with finite k (inhomogeneously tipped spins) 
even at T=  0. Mathematically, this zero-temperature attenuation in trans- 
verse spin dynamics of Fermi liquids can be described by a pole contribu- 
tion in the transverse component of the interaction function (molecular 
field), and is, in this sense, similar to the Landau damping in collisionless 
plasma. 5 

By the order of magnitude, the zero-temperature relaxation time in 
transverse channel is r , ( T = O ) ~ ( N v l . . a )  I(T/../[]H)2 for a system of tbr- 
mions with the Fermi velocity (temperature) v~., (T~..), magnetic moment fl, 
effective cross-section a, and the density N. Since the usual temperature- 
driven relaxation time is r• = 0) ~ (Nv~..a) -~(Tt../T) 2, the transition from 
the temperature-driven to polarization-driven attenuation in the transverse 
channel occurs at the temperature T,, ~ f lH when the phase space between 
spin-up and spin-down Fermi spheres becomes comparable to the thermal 
smearing of the Fermi surfaces. 

This dissipation channel is the only known zero-temperature relaxation 
mechanism in pure Fermi liquids for low-frequency long-wave processes. An 
obvious question is whether this dissipation mechanism is coupled to and 
affects other Fermi-liquid processes, including the longitudinal ones. This 
question will be addressed below. 

In principle, there are three general mechanisms that couple longi- 
tudinal and transverse processes in homogeneous systems: the magnetic 
dipole-dipole interaction, the spin-lattice interaction in solid-state electron 
systems, and the non-linearity of equations of motion. [ In inhomogeneous 
conditions with the varying direction of magnetization M(r), the difference 
between longitudinal and transverse processes becomes superficial, and all 
diffusion and relaxation processes should be determined by the shortest 
relaxation time, namely, r i .  Such a situation can occur, for example, in an 
inhomogeneous magnetic field when 9 the stationary solution for magnetiza- 
tion M has domain structure, often with a thick domain wall. Within this 
wall, the direction of M(r) gradually changes by 180~ 

In what follows, we will study the dipole coupling in helium systems, 
which is quite noticeable at high polarization, to We will not consider here 
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the non-linear coupling though this coupling could also lead to interesting 
effects especially close to or as a result of the spin-wave instability in an 
inhomogeneous setting (the Castaing instability). The spin-lattice interac- 
tion in electron systems is, to a large extent similar to dipole interaction in 
helium; however, the zero-temperature transverse attenuation in metals has 
certain features that require a separate analysis.t~ 

In systems such as liquid 3HeT and 3HeT-4He mixtures, (nuclear) 
magnetic dipole-dipole interaction is weak, and the effect of transverse 
attenuation on longitudinal dynamics can be observed only at ultra-low 
temperatures when the temperature-driven longitudinal attenuation 
vanishes. For liquid 3HeT this corresponds to the temperatures below the 
superfluid transition when the theory of normal Fermi liquids cannot be 
applied directly. Therefore, the results can be applied, without modifica- 
tions, mostly to liquid 3HeT- 4He mixtures. 

In 3He - 4He mixtures with F~; "~ < 0, the zero sound cannot propagate. 
The longitudinal sound-like oscillations in mixtures are ~2 the high-fre- 
quency first sound (sound oscillations of the superfluid 4He renormalized 
by the 3He impurities), Landau spin zero sound in the 3He component (in 
polarized mixtures, the longitudinal spin oscillations are coupled to the 
density oscillations), and the second sound which is, at T =  0, the density 
oscillation mode in the 3He component of the mixture. The most interest- 
ing modes are the zero sound in 3He, second sound in 3He-4He,  and the 
high-frequency first sound. In all these cases, the form of dipolar coupling 
between the longitudinal and transverse modes are similar, though the full 
equations involving different longitudinal modes are somewhat different. 
Nevertheless, the attenuation of all these sound modes can be described in 
terms of the effective relaxation time, r~r, and the effective Fermi-liquid 
viscosity, r/err= pv~.,r~n(1 + U(~/3)/5, via usual hydrodynamic and/or trans- 
port equations. The values r~tr and r/~tr of the effective relaxation time and 
viscosity should be mode-independent. For this reason, we prefer to 
calculate the mode-independent effective relaxation parameters rather then 
the attenuation of each particular mode. 

We will start from a calculation of the zero-temperature attenuation 
for the zero-sound in a polarized generic Fermi liquid. The sound attenua- 
tion will allow us to extract the effective mode-independent zero-tem- 
perature longitudinal relaxation time r~r and the effective Fermi-liquid 
viscosity qe~r. These expressions, in turn, can be substituted into the usual 
hydrodynamic and transport equations for 3He and 3He-4He  thus letting 
us to avoid separate calculations for different helium systems and modes. 

We will also look at dipole corrections for the threshold of Castaing 
instability. Though the effective zero-temperature longitudinal relaxation 
parameters are quite small because of the weakness of dipole interaction, 
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these parameters provide the real zero-temperature cut-offs for longitudinal 
relaxation and  transport. Since liquid helium, in contrast to electron 
systems, does not have any impurities, one may expect to observe these 
limiting cut-offs at ultra-low temperatures in highly polarized 3HeT or 
3Hey - 4He mixtures. 

2. S O U N D  ATTENUATION IN SPIN-POLARIZED 
FERMI LIQUIDS AT T =  0 

In general, the transverse zero-temperature attenuation in spin- 
polarized Fermi liquids exists because the shift between the Fermi spheres 
lbr spin-up and spin-down particles opens the phase space tbr attenuation 
of quasiparticles in spin-flip processes. The corresponding collision integral 
contains the integrand of the type 3' <' 

<I~P~ d~ P ~_ d3P.~ d 3 p 4  ~(~1 4- c 2 - ~3 - -  c4 --h(o) c~(p~ + P2 - P3 -- P~) 

x W[nlrn2r(1-  n3T)(l--n4t) +nlrn2t( l --n.~)(  1--n4t)] (1) 

and goes to zero at zero polarization ( W is the probability of the corre- 
sponding process). The processes of the type (1) involve the spin flip. 
Therelbre, within the exchange approximation, such a collision integral can 
appear only lbr the transverse processes, i.e., lbr the off-diagomfl compo- 
nent nt~ of the single-particle density matrix h. 

Without the dipole interaction, the collision integrals iLr. ~ tbr longi- 
tudinal processes involving spin-up and spin-down (quasi-)particles vanish 
at T =  0, while the longitudinal processes are decoupled from the transverse 
ones. Then the kinetic equations ['or spin-up and spin-down (quasi-)particles 
at T =  0 have the usual tbrm, 

#nT, l 
O = 6 n T . + ( ~ ~  0eT, t 

x f [J'~'~(p, p')(6nr(p')+ 6n+(p'))_+f~"~(p, p')(c~nt(p')- 6n~(p'))] dF '  

(2) 

where J~ ..... ) are the symmetric and anti symmetric parts of the exchange 
interaction function, and 6nT. ~ are the small deviations of the distribution 
functions for up and down spins from the equilibrium. The dipole interac- 
tion changes this equation in two ways. First, it adds to the l.h.s, of Eq. (2) 
the dipole collision integrals iLT, ~ with the structure (1), which do not 
vanish at T =  0 and lead directly to the zero-temperature attenuation for 
longitudinal processes. Second, it changes the interaction function f (the 
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effective molecular field) in the r.h.s, in such a way that the integral term 
involves coupling to transverse (off-diagonal) components of the single- 
particle density matrix 6nTl, and, therefore, transfers the zero-temperature 
transverse attenuation from the transverse into the longitudinal channel. 

The former, "direct" dipole processes lead to the direct spin-flip 
involving a dipole collision integral with the integrand (1) and the dipole 
vertex W. In the latter, "indirect" processes, the dipole part of the effective 
molecular field f couples longitudinal and transverse processes (equations); 
then the integral (1) appears in the transverse equation with the transverse 
exchange vertex W, and affects the longitudinal processes via the dipole 
interaction term in the coupling constant. 

The dipole vertex W, which describes the direct dipole attenuation 
processes (1), differs from the exchange vertex by a small factor of the 
order of (Ea/TF) 2 where the characteristic dipole energy is E,/= 
f1222n132T~('2/h 3, and Z is the microscopic parameter which describes the 
difference between the (pole terms for) Fermi liquids and gases. The same 
factor describes the difference between the effective zero-temperature 
attenuation in the longitudinal channel v~n(T= 0), which arises as a result 
of the direct dipole processes, and the exchange zero-temperature trans- 
verse attenuation r l ( T -  0) 

The second, indirect mechanism of sound attenuation at T = 0 ,  is a 
result of magnetic dipole coupling between sound oscillations and trans- 
verse spin dynamics. This coupling transfers the zero-temperature attenua- 
tion from the transverse spin waves to the longitudinal sound, and the 
factor (Ej/TF) 2 appears in the coupling constant rather than in the transi- 
tion probability W. 

Since both--direct and indirect--dipole attenuation processes are 
weak, these processes can be studied separately, independently from each 
other. As a result of dipole processes, the transition from the temperature- 
driven to the polarization-driven zero-temperature sound attenuation 
should occur for the longitudinal sound in sub-/~K region, i.e., at con- 
siderably lower temperature than the recently observed anisotropy tem- 
perature T, at which the transverse attenuation looses its l IT  2 dependence. 
Our results for sound attenuation will allow us to calculate the effective 
dipole zero-temperature contribution to viscosity q~t~(T= 0). 

A. Direct Processes 

In this Section we will consider the direct dipole attenuation processes 
in the longitudinal channel and neglect the dipole coupling to transverse 
dynamics. Then the kinetic equations for spin-up and spin-down particles 
(2) should include the dipole collision integrals iL~.~ in the 1.h.s. At T = 0 ,  
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exchange collisions in Fermi liquids do not result in attenuation for 
longitudinal processes, while the non-zero contributions to the dipole colli- 
sion integrals L~.~ come from the following spin components 

defined as 

- -  L f I WI 2 o~(gi _1_/z2i _ / ; 3 k  - -  ~:4/) cS(p -I- P2 - -  P.~ - -  P4) 

x (nine,(1 - n3k)(l -/'14/) - -  ( l  - - n i ) ( l  - n 2 j  ) rt3k n4/) 

(3) 

d3p2 d3p~ d-~p4 

(2~h) ~' 

(4) 

(5) 

and it is the same for all Lgi.~./. The vertex function Fk/.~/in (5) is expressed 
via the matrix elements of the dipole interaction U~,(q) as 

Fk/.ij(P3, P4; P, P2) = Z2( U/,/,i/(P - P3) - U I k , i i ( P  - -  P4)) 

4 [ 3 ( 6 . q ) ( c r ' . q ) . ~ , ) ]  
U~'(q) =~ ~/~2 q2 (6 

(6) 

where Z is the Fermi-liquid renormalization coefficient in the pole part of 
the single-particle Green's function. The equilibrium distribution makes the 
collision integral equal to zero, Lij. k,{n~~ = 0. 

The distribution function in the kinetic Eq. (2) has the form 

nt.~(s) = n~( to )  + OnT, t = n~~ + Anr.l  (7) 

where 

I W[ 2 = [FkI.~/(P~, P4" P, P2)[ 2 

= (47~f1222)2 (P -- P3): (P-- P~) + 
(p_p3)2 

(P-- P4): (P-- P4)+ 2 
7p:-L? 

(i, j, k, l stand for 1" or J,). The probability W of the dipole process in 
Eq. (4) is equal to 
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We will look for the eigenvalue of the kinetic equation using the perturba- 
tion expansion in the dipole interaction, co = ~o~~ + ~o~) + . . . .  where ~o ~~ is 
the sound eigenvalue, 

co t~ = s v g k  (8) 

in the absence of dipole interaction. As it is common to this type of kinetic 
Fermi-liquid problems, the equations can be simplified by the substitution 

AnT. 1 @n (~ 
VT. t -  n]0,[( 1 _ n~O~) ~ --co ~')) tinT, t / f l , H ( k ,  v) c3e~(l~- ~ (9) 

where we assumed that the external magnetic field is weak and introduced 
the usual Fermi-liquid renormalization of the particle magnetic moment, 

F ( a ) ]  
f l , = f l / ( l  + _ o  , 

(F ~(') is the zeroth harmonic of the antisymmetric Landau function). --O 
Without the dipole interaction, the solution has the form 

with 

1 O) (~ 
WT. t=ud fliH~o<o) k v (10) 

Here we assumed, as it is often done when studying the sound propagation 
in Fermi liquids, that the zeroth Landau harmonics, -oF~""), dominate the 
interaction function, and other harmonics can be neglected. The results for 
more general situations are much more cumbersome. In contrast to 
standard sound calculations, we prefer to use this approximation in order 
to simplify the dipole coupling terms rather than to simplify the integral 
Eq. (2). In this approximation, the eigenvalues in (8) is 

s ,  s + l  1 
ms- -Z- i - - l=  (11) F ( s )  

- - 0  

Without the dipole interaction, the collision integral in (2) is zero. To 
get the main term in the collision integral (3)-(5), we should substitute 
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the solution of the kinetic equation without the dipole interaction into (4): 

1 W ~ d3p~ N3p~ d3p4 
L~i,,',z=~f [ I- - ( ~ g  #(ei+e:/-e_~,,,.-e4/)d(P+Px-P3-P.d 

X (~I/.jr t{a2 tI./3 vii4) nin~/, 1 0  0 z ,  __n3/.0 )(i --n4/),0 ttJi = t{J(pi) (12) 

Then the sound attenuation, i.e., the imaginary part of the eigenvalue ~o in 
the high frequency limit 

Re co>> 1/r~.n- 13) 
becomes equal to 

lm o ) = f  d~p (Sn / f  d3p (~5n)2 
(2re/t) ~ k v ~  L+ (2g/l) 3 kvd+ 

14) 

where we took into account that the sound waves are the joint oscillations 
of spin-up and spin-down particles, 

L~=Lr+L ~, n = n r + n  1, m=nT-nt, ~ = ~ S r + ~  t, ~r.t=~(e--eF..~) 

(15) 

(the (~-functions in denominators (14) are cancelled by the c5-functions in 
&~ (9)). 

Alter straightforward algebra, Eq. (14) reduces to 

fltH[ ~ d:~P kv(~Sr+dt)] " ~ ] IV]-" d:~pd"p"d3p3d~'P" 
lm U) 

x ~5(e + g2 - e3 -- e4 -- 2fl, H) d(p + i12 - -  113 - -  P4) 

_ . ~ , , ,  I ,  I., n o x ( ~ + ~ ,  ~ 4)- --nat)( 1 - -  - - (nrnzr(1 41, 

+ nor n~l( 1 o ,, --n31)(1 - -na t ) )  (16) 

The calculation of the integrals of the type (16), which appear in 
similar problems, 3"6 is rather complicated; we will not give the details. We 
used the method similar to that in the fourth Ref. 6. The substitution 
q = P - ( P 3  + 1 1 4 ) / 2  trivializes the integration over the energy c~-function, 
especially in low magnetic field when one can disregard the term 2fl~H in 
its argument. After the integration over the 6-functions, one can simplify 
the integral (16) to the form 

E" /R H \~ 
Imr I~5nShTFk--T--/-F] I(s, COS 0) (17) 
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where 0 is the angle between the wave vector k and the magnetic field H 
(the z-axis), and 

I(s, cos 0) 

I 2s 2 S+ 1] 
s 2 _ l  s l n s _  1 

( T F  "~3 ~lH] f d3p3d3p4sinO,,dOqd~~ 

(q + (P4 -- P3)/2): (q + (P4 -- p3)/2) + 
• 

(q-(p4-P3)/2): 
(q-(P4 

(q - (P4 - p3)/2)+ 2 

•  slkl 
s Ik[ - k(q + (P3 + p4)/2) 

slkl slkl ~-~ 
s Ikl - k p 3  s [kl - k p 4 / ]  

s l k l  

s Ikl + k(q - (P3 + p4)/2) 

x nt( q + (P3 + P4)/2)( 1 - n~(p4)) 

X (nt( q -- (P3 + p4)/2)(1 -- nT(p3)) + n,(q -- (P3 + p4)/2)( 1 - n~(p3)) ) 
(18) 

where P3.4 are dimensionless variables, Pi"*Pi/PF, Iql : IP4--P3I/2 and 
nr.~(x)=l--| The function I(cos0) is plotted in 
Fig. 1 for several values of s. 

These results define the direct dipole zero-temperature sound attenua- 
tion in polarized Fermi liquids. The corresponding effective value of the 
longitudinal relaxation time will be given in the next Section. 

B. Coupling to Transverse Spin Waves 

In this sub-Section we will analyze the second dipole source of the zero- 
temperature attenuation for the longitudinal sound, namely the coupling 
between longitudinal and transverse processes. The main coupling mecha- 
nism, important in this context, is the dipole correction to the Landau inter- 
action function which is, roughly speaking, the dipole component of the 
effective molecular field in spin-polarized systems. We will  take into 
account only those spin components of the (weak) dipole interaction func- 
tion which are responsible for the transfer of transverse attenuation into 
the longitudinal channels, and will disregard all other dipole contributions. 
Since the dipole forces, responsible for the coupling of transverse and 
longitudinal channels are weak, this coupling can be considered pertur- 
batively in the lowest order. 
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Fig. I. l(s, x) as a function ofx=cosO, Eq. (16), for four 
values of s, s = 2; 3; 3.47; 5). 

The effect is simple. Without the dipole interaction, the low-frequency 
long-wave excitations in the Fermi system at T = 0  are non-attenuating 
density oscillations with linear spectrum, which are described by Eqs. (2), 
and attenuating transverse spin waves with quadratic spectrum, which are 
described by the equation-" 

2 (o)] ffl,,)(p, d F , = i s  T O n , T ( c o - k - v - ~  ) -  k - v O + + ~ m  ] p')Sn,T(p' ) 

(19) 

where O+ and mare defined in (10), s is the appropriate spin component 
of the transverse exchange collision operator, and ~ = ~ o - s  2fliH/h 
differs from the bare Larmor frequency Do = 2flH/h by the standard Fermi- 
liquid renormalization factor fll = fl/( 1 + F(o")). Equation for the conjugate 
spin component of the density matrix, OnT+, differs from Eq.(19) by 
H ~  - H .  

In spin-polarized Fermi liquids, the transverse collision integral is 
has the structure (1) and is finite even at T =  01-8 resulting in the zero- 
temperature attenuation of the spin waves. On the other hand, the density 
(sound) oscillations of On are coupled to and accompanied by the oscilla- 
tions of the longitudinal component of the magnetic moment Om, Eq. (2). 
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Magnetic dipole interaction couples the motion of longitudinal and trans- 
verse components of magnetization 6m and 6n+T thus transferring the zero- 
temperature attenuation from transverse to longitudinal spin oscillations, 
and leading, in turn, to a finite sound attenuation (oscillations of c~n). 

For simplicity, in this Section we will assume that the polarization is 
low. This will not only simplify the longitudinal equations, but will allow 
us to write transverse equations in a standard Fermi-liquid form without 
any microscopic complications inherent to the transverse equations in 
dense highly polarized Fermi liquids. 6 As in the previous Section, we will 
assume that the zeroth Landau harmonics, F~; ''"~, dominate the interaction 
function, and other harmonics can be neglected. We prefer to use this 
approximation in order to simplify the dipole coupling terms rather than 
to simplify the integral Eq. (2), (19). 

In contrast to the previous Section, we will include the dipole interac- 
tion not into the collision integral, but into the Landau interaction function 
f responsible for coupling to transverse modes. Coupling of Eqs. (2) and 
(19) is provided by the magnetic dipole-dipole interaction with the 
Hamiltonianl3. ~4 U,,,(q), Eq. (6). This term in the Hamiltonian leads to the 
dual change in the effective field f(p, p'). First, it is responsible for 
demagnetizing factors which, in an elliptical sample, are described by the 
demagnetizing field H d. The integration of dipolar interaction, necessary 
for the calculation of the demagnetizing field, is not trivial because of the 
divergence at small wave vectors. It is possible to show ~5~7 that the 
demagnetizing field in spherical samples is, with good accuracy, equal to 

Hd=4zc(H(M.H)/H2-M/3)  Z 2, M=(fl /2)  Tr~ f ah. d r  (20) 

Note, that this equation for Hd involves the exact value of the magnetiza- 
tion M, and includes both the equilibrium and non-equilibrium terms M0 
and 6M. 

What is more important in our context, the dipole interaction changes 
the effective interaction function. Here the divergencies in the dipole 
integrand do not cause any problems. The full antisymmetrized vertex func- 
tion contains two diagrams which differ from each other by interchanged 
outgoing lines. The calculation of one of these diagrams and the limit F'" 
of the corresponding vertex function yields the following addition to the 
Landau interaction function: 

f~/s.y,~(p, p,) = fl.O(p, p,) d~d/s~ + o~r,-a/saf~")(p, p') 

4 13(a/~y �9 q)(~,~ �9 q) ] + ~ rcZZfl 2 q2 (%~y. ~ )  (21) 
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(cf. Fm, i/(p3, P4;P, P2), Eq. (6). Equation (21) contains only one of the 
diagrams for F'". The other diagram is already included into the term with 
SM in the demagnetizing field H,z (20). The substitution of the dipole terms 
(20), (21) into the commutator in the equations of motion, 

[~, g], e - ~"~ fl,~, 3H~/+ ~f~/~.r,~(P, P') 3n~s/~dF' (22) 
d 

leads to the appearance of new terms in Eqs. (2), (19). 
Of all emerging small dipole terms, we are interested only in the terms 

that couple longitudinal and transverse equations. All other dipole terms, 
including the demagnetizing factors, lead to insignificant corrections to the 
spectra and are irrelevant in our context. We will neglect all these terms 
from the beginning. The coupling dipole terms change Eqs. (2) for oscilla- 
tions of particle and spin density Jn + - J n  and Jn ---gm as 

~2]13 
0 = k .  v) - k .  + r;'."' f J r '  

7f2h3 la ) 
- k . v ( J r - g , ) ~ r m F  o "" f dn '-~ dF' 

4 
- '~  ~fl2Z2k. v5-~ 3q=q+l 

5n'~T3q;q-+on'rt q2 dF' (23) 

Similar dipolar coupling corrections appear in Eqs. (19) for dntr and Onrl, 

E 21 iL~r.~ r=Jn~r . r~ (co -k . vT - f~ ) -  k . v 6 + + ~ m  "~ 

/7c2h 3 , 4 f jn, 3q:q + ) 
• 'X, PF m(- F~(' f 3n'~r.T ~ dF' + ~ 7"f, fl2Z 2 - q'- - dF' (24) 

We are interested in the sound attenuation caused by zero-tem- 
perature non-vanishing part of the collision operator s In the absence 
of dipole coupling, the (zero-) sound solution of Eq. (23) has the form 

On- = const x - - - -  

5n + = const x - -  

k . v  f l tH  F~ ''~ 
- k . v  TF m,) F(-~ --0 - -  ~ 0  

(25) 
k . v  

c o - k . v  
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while the spectrum is 

1 s s + l  
= ~ l n  (26) co ~~ = uk = SV F k  , F~.~I ~ - 1  -- 1 

(below we will consider const in Eq. (25) equal to 1). Since we are looking 
for a small imaginary correction to this spectrum associated with the colli- 
sion operator s in Eq, (24), we can neglect all dipole terms except for 
those leading to attenuation. The solution of Eqs. (24) can be expanded in 
spherical harmonics as 

cSnlT,Tl=n~]~ ill q_,,ll,II Yl l + " l t ' - l l Y 1  I ,r~ Yo, o + nlT,Ts Y l . o  - -  " 1 %  T~ , ttLT,Ts . -  

yo, o = 1 t 3 x / ~ ,  Yl,o='  cosO, Yt._+,=-T- sinOe • 
(27) 

If we are interested only in the coupling-induced sound attenuation, we 
need only the contribution to 6ntr.T ~ that is proportiona to k. There terms 
in the spherical harmonics are equal to 

n,)• 
A ihkvFI~ "~ ilt/r • 

lr'~ - 4,v/~ f l f l , H  2 2flirt-T-ill/z• 

~,,, A ihkvFI~"~ [ j~.o, 3 
~T.T~= -T-Zw/~fl~H(ZfltH_T_ilt/r• 1 + ~ , / ~  

n~ i, +_ ~ ~__ it~kveJl~" +- t~ 
+r,r~ = -T- ~] 3 A f l lH(2f l~HT-ih/r  • 

(28) 

where 

A = x / 2  E, , ( f l ,H)2 F~o ~ 
z~ 2 TF TF F~o ') ----oF'")' Ea = f12Z2m3/2T~/2/h3 

I ~  '/~) = f 1.z ( O, (~ ) Y*/~ dq~ sin 0 dO 

J~'/~' = I+(0, 4) Y~.o Y*/~ d~ sin 0 dO 
(29) 

k-v q+q=d~' 
I+_(O,c~)= co lo )_  k .  v 

and the z-axis is chosen along the magnetic field. 
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This expression for 5nlr,r ~ should be substituted into Eqs. (23). The 
main imaginary contribution comes from the term 

3qz -~ Im[an'~r q +3n'r~q+] kVFA,y(O,O) 
q-  T& 

(30) 

where 

r il ~ 1,0)[') 
=| ____~+ __~",'__2 i ,-+(l'~ ) O,.o ),(0, 

L, / k l  + F;"'t ,/5 

4W@(.l"," + J", -"Q, ] - - i  , - +  Q l , l  -~ , i )  ( 3 1 )  

1 EJA h 2 
A,-V/~z&T, ."  (fl,H)e, Q,./;(O,~b) =j" V~./~(O',~b') qq_if: dO' 

As a result, all the angular dependence of the coefficients in the remaining 
integral equations is given by the integrals Q. 

Eq.(30) should be substituted into (23). After integration over 
energies, this equation reduces to 

d ~ '  7 
0 = ( - s  + cos O) 6n ~- + F[~"'" cos a 15# • 

4zr d 

.. 47z 

Without coupling, i.e., at At = 0, the solution of this equation in the lowest 
order in polarization has the form (25). The perturbative coupling correc- 
tion to this solution is 

I m r o =  - -  - -  

E _  

(kVF)2fliH AIF~ "~ _ 

2 r •  TF F~o " - -oi~l"l - '  

f d~' y(O, q~)cosO/f df~' cos0 
4zc s Z c o s O  4re ( s - c o s  0) 2 

(33) 
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After calculating integrals, we get the following expression for Im eg: 

h2I v,)2 U F'o" ]2 
Im ~ = 32rc2z • | ~'(,.3---~1~,)/ 

I_ --0 - -  --0 / 

E a [k  2 k 2 _ k 2_ 4k 4 _ 3k2k 2 + k 4 
x-G7 ~ "7..2 " 3k 4 ) T F~k-  k Fl(s) + F2(s ) (34) 

where 

w ( s 2 - - 3 ) - - l / 3  I w(Bs2--1)--I s2 ~ 7] 
F ' ( s ) = Z s 2 ( s 2 - 1 )  w~---1)--2i- 2 1 + _ 0  ic~,,~ + - 3w(s 2 - 1 )- - 

w(s 2 + 3 ) - 1 / 3  [ _ s  
F2(s) = 2s2(s 2 -  1) ~-~_;---i-~Z i w(s 4 -  1) 3 5J (35) 

s 1 s + l  
w(s) = ~ n s_--~-  1 

and in the single-harmonic approximation w ( s ) =  1/F~i'( 
Note, that Eq. (34), in contrast to Eq. (17), does not contain the spin 

polarization explicitly. This seems surprising since in the absence of 
polarization the zero-temperature attenuation should vanish. However, the 
polarization enters (34) implicitly in two places. First, l/r• is proportional 
to the square of polarization. Second, the calculation was performed and 
the equation is valid only in low-frequency conditions kVF ~ f~o. At higher 
frequencies the factor (kt)F) 2 should be substituted by the square of the 
Larmor frequency .Oo. As a result, (34) contains polarization even to the 
higher power than Eq. (17). Therefore, the contribution of dipole coupling 
to the zero-sound attenuation is comparable to the direct dipole attenua- 
tion only at relatively high spin polarizations. 

3. EFFECTIVE RELAXATION AND VISCOSITY 

The above equations for sound attenuation in polarized generic Fermi 
liquid allow us to get the values of effective relaxation time and viscosity. 
Comparing Eqs. (17) and (34) with the standard expressions for (zero) 
sound attenuation in Fermi liquids, we immediately get the following equa- 
tion for the effective relaxation time for direct 

1 Imo9 E~ [ f l , H ~ 2 I ( s ,  cosO) 

re. - - - =  ~(s) = 1 6 z r S h T F \ - - ~ J  "~-~ 
(36) 

w2(s 2 - 1 )(3s 2 + 1 ) + 2w(s 2 - 1 ) - 1 
~(s) = w(s 2 -  1 ) -  1 
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and indirect 

1 I m  a) 

- h21kv")2 F 1 2 t37)  
32n2ra ~:(s) 1_ F0 ~'' -- F~,"'J 

E ~ ~ k ~ , 4 " ' k 4 4k_-3k-k- + tz~ (k-'_ - - - k :  F~(s)+ - - F,(s) ) 4 9 ") x TF\k- k- 3k 4 - 

dipole processes. The full zero-temperature relaxation time can be obtained 
from Eqs. (36) and (37) using the Matthiessen's rule. 

As a result, we can introduce the effective field-driven viscosity at 
T = 0 ,  

q~,r= �89 + F~1"'/3) (38) 

Note, that the viscosity depends on the angle between the velocity gradient 
(k) and the direction of polarization z. This anisotropy of the fluid 
dynamics in spin-polarized systems with dipole interaction is quite natural. 

It is not surprising that effective relaxation times for direct and indirect 
processes are somewhat different. The most noticeable difference is the 
prefactor k 2 in Eq. (37) which is absent in Eq. (36). At first glance, this 
could imply that Eq, (36) describes, in contrast to (37), the high frequency 
attenuation. However, this is not the case. Both relaxation times were 
calculated under the same condition o)>> 1/v~tr (by the Fermi liquid 
standards, this is a low-frequency regime for zero sound). The extra factor 
k 2 in (37) is not the sign of some low-frequency attenuation mechanism, 
but reflects the fact that coupling between the longitudinal and transverse 
modes exists only in inhomogeneous conditions (the coupling factor k.  v in 
Eq.(23)). Since the calculation of (34) was performed for kvr'~fio, the 
factor ( k t ) F )  2 a t  higher frequencies should be substituted by the Larmor 
frequency f~o 2 thus disappearing from the equations. Only at these frequen- 
cies the indirect attenuation becomes comparable, by the order of 
magnitude, to the direct dipole attenuation. 

The high-frequency attenuation can be evaluated by the method 
similar to that used in the calculation of sound attenuation in Fermi 
liquids.18 The non-vanishing at T =  0 part of the collision operator contains 
the integrand 3'6 of the type (1) 

d3P, d3p2 d3p3 d3p4 ~( ~, +e2 - e 3 - e 4 - 2 f l , H - h r  ~(P, + P 2 -  P 3 -  P4) 

x [nlTn2T(1 -- n30(1 --n4~) + nlTn2t(1 -- n3t)(1 -- n4~)] (39) 
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[F o r  transparency of the results, we explicitly described the spin-flip term 
in the energy 0-function. In the low-frequency calculations in Sec. 2, we 
disregarded ho  in the energy ~-function]. This integral is similar to that 
studied in, 3'6't8 and depends, in a relatively simple way, on the relation 
between three energy parameters, hm, T, and fill. These parameters play 
similar roles in defining the region of the phase where the integrand is non- 
zero. The analysis shows that at zero co this integral for dilute Fermi 
systems can be written 3'6 as 

where 7(,,.T=O is the attenuation coefficient at zero temperature and fre- 
quency (the exact temperature dependence is a little bit more com- 
plicated4). For dense Fermi systems the frequency ~o in this equation is 
renormalized. 6 Without the magnetic field, the integral (39) has the form TM 

Y~&~,.,= 0 Q1 -['- ('~'~))09 2 

irrespective of the density. We are interested in this integral at T =  0, when 
it reduces to the tbrm 

// // ~ '~  (.O 2 
(4O) 

\ \ ~ z o / z / /  

(in dense Fermi liquids, ~o = 2fill  in this equation should also be renor- 
realized, f l~f l~) ,  where 7r ..... o determines the usual low-frequency sound 
attenuation in Fermi liquids, 

77-. .... o = i m k =  ~(s) (41) 
S'~effU I.. 

4. SPIN-WAVE INSTABILITIES 

The non-linear coupling between longitudinal and transverse channels 
is enhanced close to the Castaing instability in transverse spin dynamics 
(see, e.g., Ref. 19 and references therein). We analyzed the dipole effects on 
the onset of Castaing instabilities in the presence of magnetization gradient 
VM. Without the dipole effects, the instability occurs at k2=/ak,VsM, 
where ~ is the usual Leggett parameter (see below). One of the effects of 
the dipole interaction is that the instability condition becomes anisotropic 
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by acquiring terms of the form k: 2, /~k:V:M, (/tVM) 2, and (~V=M) 2. 
However, these terms contain a small factor E j / T  F, and we will not give 
here neither the lengthy calculations, nor the corresponding cumbersome 
expressions. What is more important, these anisotropic corrections do not 
have any fixed pre-determined signs so that it is impossible to say whether 
the onset of instabilities occurs earlier in certain directions. 

Though this instability appears in transverse spin dynamics, one of its 
important features is that the Leggett parameter/~ = ~ r / M  in the equation 
for the onset of instability is proportional not to the transverse relaxation 
time r~, but to the longitudinal time viE,/z = flirrl/M. [The use of the same 
notation it in the equation for the onset of instability, It = [I~rH/M, and in 
the equation of spin dynamics,/z = ~ i r •  is somewhat confusing and is 
due to the fact that at the time when these equations where first derived, 
the difference between transverse and longitudinal diffusion coefficients was 
not known]. Since fir oc 1/T 2, this means that the onset of instability 
k2=/tk~VsM happens, with decreasing temperature, at larger and larger 
wave vectors. The usual deriwttion of this instability condition assumes 
that the gradient of the longitudinal magnetization causes a large longi- 
tudinal diffusion current without any longitudinal oscillations, i.e., that 
I/rtl >>kvF. These two conditions, taken together, limit the temperature 
range in which the instability can be observed to 

TF>> T ~  TF(o~a/L)ij4/,cl s (42) 

where ~ is the degree of spin polarization, x in the molar density of the 
Fermi liquid, and L is the spatial scale of the polarization gradient (in 
S H e -  4He mixtures, x is the concentration of ~He; in pure 3He, x = 1 ). 

The dipole coupling between longitudinal and transverse channels 
leads to a substitution of vii by v~. and modifies this restriction. At zero 
temperature, the instability occurs at k 2 =/z~trkiViM,/t~r= ff~i%~r/M under 
the condition 1/v~f~r>>kVF. The compatibility of these two equations 
requires high polarization with a small gradient, 

Ea >> TF(a/~3L)i/4 

As a result, the instability exists even at zero temperature though can be 
observed only for extremely small values of k. 

5. CONCLUSIONS 

We developed a theory of dipole coupling between longitudinal and 
transverse spin dynamics processes in spin-polarized Fermi liquids with an 



Zero-Temperature Relaxation in Spin-Polarized Fermi Liquids 671 

emphasis on the transfer of zero-temperature transverse attenuation into 
the longitudinal channels. We calculated the zero-temperature dipole con- 
tribution to the sound attenuation in a generic Fermi liquid. This informa- 
tion allowed us to evaluate the effective mode-independent longitudinal 
relaxation time and viscosity at T=0.  These coefficients determine the 
zero-temperature attenuation of different hydrodynamic and high-fre- 
quency modes in helium systems. The effect of the spin-lattice interaction 
in spin-polarized solid-state electron systems should be similar. 

We determined the effect of dipole coupling on the spin-wave (Castaing) 
instability. As a result of dipole coupling, the Castaing instability does not 
disappear even at ultra-low temperatures, though its observation would 
require a relatively large experimental installation. In addition, the dipole 
interaction makes all the processes in spin-polarized Fermi liquids highly 
anisotropic. 
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