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We present a simple description of transverse dynamics of dilute Fermi sys- 
tems in terms of statistical quasiparticles. We give explicit expressions for 
the quasiparticle interaction function and collision integral at arbitrary tem- 
peratures, and discuss the implications of this approach in classical and de- 
generate regions, including the quantum gases. The results provide an un- 
expected explanation for the zero-temperature attenuation in transverse spin 
dynamics and peculiar I2-terms in molecular field as imaginary (pole) and 
real (principal) parts of the quasiparticle interaction function. 

1. I N T R O D U C T I O N  

Recently there was a noticeable interest in transverse spin dynamics 
of spin-polarized Fermi liquids and gases (see references in review1). Spin 
dynamics experiments (spin diffusion and echo, spin-wave resonances, etc.) 
are described using either Landau-Silin-Leggett equations for Fermi liquids, 
or kinetic equation for dilute polarized gases. 1-5 Despite serious attempts, a 
uniform description of gases in a wide temperature range is not completely 
satisfactory. The problems are associated less with an extension of the quasi- 
particle (qp) approach to high temperatures than with a limited applicability 
of the microscopic and phenomenological Landau theories to transverse dy- 
namics. The Fermi liquid theory exhibits several anomalies that do not exist 
for longitudinal processes and are suppressed at low polarizations. 

Straightforward application of the Landau theory to transverse dynam- 
ics at high polarization is questionable because of unavoidable integration of 
distribution functions between widely separated Fermi surfaces for spin-up 
and spin-down particles (see 6,7 and references therein). Because of strong 
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attenuation away from the Fermi surface, such integration is forbidden m 
the Fermi liquid theory. Experimentally, this leads to a profound difference 
between relaxation times, Ttl and T• and spin diffusion coefficients, DII and 
D• for longitudinal and transverse components of magnetization even with- 
out the Leggett-Rice effect. The transverse coefficients do not increase with 
T --+ 0 as 1/T 2, but remain finite even at T = 0. This anomaly 8A was 
confirmed recently in calculations for gases 5 and experiments with 3[-/e and 
3 H e -  4He.9,10 

Other anomalies are caused by spin-up - spin-down asymmetry. This 
effect is similar to the particle-hole asymmetry away from the Fermi sur- 
face: separation between spin-up and spin-down Fermi spheres makes the 
molecular fields for spin-ups and spin-downs distinctly different. This re- 
sults in a split of phenomenological equation of transverse dynamics in po- 
larized Fermi liquids into two coupled equations on two different energy 
shells ~ = el- T ( p -  k/2) and w = ~t~ (P + k/2)  "n Another anomaly is more 
technical. The Landau interaction function in non-polarized systems can be 
expressed either as a limit F ~ of the full vertex, or via the irreducible vertex 
F (1)]2. At high polarization, the interaction function can be expressed only 
via the i~mducible vertex and not as any limit of the full vergex, n,6 

On the other hand, spin dynamics in classical gases is described by 
a standard Boltzmann equation and does not exhibit any signs of low- 
temperature  anomalies. To understand the transition from Fermi liquid 
to classical description, we need a uniform theory for the whole temperature  
range. This problem is addressed below. We will describe spin dynamics in 
terms of "statistical qp" and give expressions for the qp interaction function 
and collision integral in the whole temperature range. 

2. S T A T I S T I C A L  Q U A S I P A R T I C L E S :  I N T E R A C T I O N  
F U N C T I O N  A N D  C O L L I S I O N  I N T E G R A L  

Diagrammatic kinetic equation for n% in the second order in the inter- 
action can be transformed to the Fermi-liquid form 

Ot~+(i/h)[~,~=E{~}, ~(p, rl='~o+ f f(p, pl)6~(pl,rldF' (1) 

with a rather unusual expressions for the transverse component of (Landau) 
interaction function f (p, Pl)  7 . 7 1 ,  

1 d 3- '  
f ( P ,  Pl)  = - T ( p - P l ) - - ~ f ~ { T ( P l - P ' ) T ( P l - P l )  • (2) 

[ 1 1 e + el - e' - e] - i0.  sign (p' - p~) - P e  --~ el - e  t --41' 
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_ IT2 (p~ _ p/) _ T (p~ - p l )  T (p~ - p')] • 

%-,% 
[C -[- ~1 -- e' -- ~/1 -- iO" sign (p' --p~) + 

e + el - e' - d 1 - iO- sign (p~ - py)]} 
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and the transverse collision integral s =/ :con = 

dapl d3ff 
(27rh) 3 (27rh) 3 {5 (e -{- el -- e j -- ~Jl) T (Pl ' pt) T (p] -- Pl)  • 

{[nTt (pl)  (n - -  1 ) -  nl',L ( p ) ( n l -  1)1 (1--  n ' )  + 

2 [rt$$ (Pl)--rtT~ (P)] [rt'TT (rtl(ff~ -- rt'l~$) -{'-'n~(ff ) ( 1 -  n'~t)] } + 

(c + e~ - e J - el) IT 2 (p~ - p') - T (p~ - Pl)  T (p~ - p')] • 

nt~ (Pl ) [ (n~ - n ' ) ( n -  1 ) +  2n~t ( 1 -  n~(~ )) + 2n:~ (1 ' n~(~))] - 

nTt ( p ) [ ( n ' -  n ~ ) ( n , -  1 ) +  2n~T ( 1 -  n~(~ )) + 2n~t ( 1 -  n~(~))] (3) 

there T (Pi-Pj) is the scattering T-matrix, n$~ are the spin components  

of the single-particle distribution, n = nTy + njA , and n(~ = n(T= 0). 
These expressions can be simplified for quantum gases where T ( p ,  p l )  = 
-Srrh2a/m (a is the s-wave scattering length): 

f (P, Pl)  
167r2a2h 4 ]" ------:d3ff 8~rh2____ a + 1 

m ~-~ : J  (27r~) ~[P C--~C 1 --(r _ e l  
! I 

1 - njA - n i t  T 
+ ~ - e' - ~'~ - iO- sign (p' -- p~)]' 

(4) 

Z:coll = 
327r3h3a 2 m2 / d3pl d3pl 5 

( 2 . h ) 3 ( ~ 3  ( ~ + e l - d - 4 ) •  

[nTl ( P l ) ( n -  1) -- nt~ (p ) (n l  - 1)] (1 - n ' )  + 

2[nyt ( P l ) -  nt~ (p)] [n'?T { ' (o)  , (1 ' _ ~"lJ.$-  r~lSJ.)~-rt~ ) - -"$ t )~  5) 

Eqs.(2) - (5) provide uniform description of spin dynamics, and contain 
both low-temperature anomalies and high-temperature classical expressions. 
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3. Q U A N T U M ,  D E G E N E R A T E ,  A N D  C L A S S I C A L  G A S E S  

Gas is characterized by two density parameters, Nr~ and NA 3 (r0 is the 
interaction radius, A is the de Broglie wavelength). Expansion in Nr0 3 << l 
corresponds to account for two-, three-, and multi-particle collisionsi in prac- 
tice, one rarely goes beyond the two-particle correlations. Parameter NA 3 
describes the distribution function rather than the density: in Boltzmann 
gases NA 3 < <  1, while for degenerate gases NA 3 ~ 1. 

The ratio ro/A ~ pro/h ~ (Nr]/NA3) 1/3 depends on degeneracy of 

the system. In Boltzmann gases, ro/A ~ (roT) 1/2 (to~h) does not depend 
on density and is large at T >> h2/mr 2. At T << t~2/mr 2 one can reach 
the "quantum" region with ro/A < <  1 for Boltzmann gases T >> TF. h~ 
degenerate gases, ro/A ~ pFro/h ~ NUaro < <  1 contains density and is 
small. We will use the te rm "quantum gases" for all gases for which ro/~ < <  
1, irrespective of their degeneracy. All degenerate gases are "quantum" as far 
as the density is low, Nr 3 << 1, while Boltzmann gases are "quantum" only at 
h2n2/3/ra << T << h2/mr 2. This "quantum" domain is a natural transition 
between the Boltzmann and degenerate regions when many quantum effects 
and the expansion in Nr~ < <  1 and ro/A < <  1 are similar irrespective of 
degeneracy. Another appealing feature is that these are the gases of long- 
wave ro/), < <  1 "slow" pro/• < <  1 particles for which collisions reduce to 
the s-wave scattering with the momentum-independent amplitude - a .  

One should be careful in applying (2) - (5) at different temperatures.  
In degenerate gases, the density expansion m Nr~ coincides with the inter- 
action and momentum expansion for the T - m a t r i x  in pFro/h ~ NU3ro. 
Since the density expansion in Nr 3 is truncated, the accuracy requires not 
to go beyond the s-wave scattering for the T-matrix,  i.e.. ~o use Eqs. (4), (5) 
rather than (2), (3). In Boltzmarm gases, one can use exact T-matrix.  How- 
ever, higher order density terms in Eqs.(2), (3) constitute expansion in N)~ 3. 
These terms are legitimate for degenerate gases when NA 3 >> Nr~, and 
higher order terms in NA 3 can be kept within the lowest order in Nr~). In 
"classical" Boltzmann gases NA 3 << N r  3, and the interaction function and 
collision integral (2), (3) should contain only in the lowest orders in the dis- 
tribution functions (this effectively makes the interaction function equal to 
zero). In "quantum" Boltzmann gases with N/~ 3 :>> N r  3 higher order ~erms 
in NA 3 can be retained. In quantum gases, the one can keep all higher or- 
der density terms in the interaction function, and can restrict oneself to the 
s-wave approximation for the T-matr ix  (this is a must for degenerate gases). 

The meaning of Eqs.(2) - (5) is different at different ~emperatures. tn 
the degenerate case, the imaginary (pole) part  in the interaction function 
describes the zero-temperature attenuation (finite diffusion and relaxation 
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at T = 0). [This pole term is similar to the Landau damping in collisionless 
plasma]. At T = 0 the interaction function (4) coincides with the irreducible 
vertex of ReL, 11 while its real part coincides with the results of direct cal- 
culation in. 14 The collision integral (3), (5) at T -- 0 is zero. At finite 
temperatures there are two different T2-contributions to dissipation: finite- 
temperature terms in I m f  (4), and the collision integral (5); this explains 
the temperature dependence of attenuation in Ref. 13. 

The real part of f-function (2), (4) is the /2  term which has been repeat- 
edly discussed for Boltzmann gases. The first-order density term with P~ 
in molecular field was suggested for Boltzmann gases in Ref. 15 on the basis 
of the expansion in U. It soon became clear 16' 17 that the first-order density 
I s -  term in 15 should disappear as a result of the renormalization from the 
interaction U to the T-matrix (this cancellation can be seen in the square 
brackets in Eq.(4)). The silent consensus was that the terms with p 1  are 
always cancelled for Boltzmann gases, though this has never been checked 
in higher orders. The second-orde r / s - t e rm (2), (4) exists and is the same 
at all temperature s. Its contribution to kinetic equation (1) contains the 
product of three distribution functions and should be used very cautiously 
for classical gases since standard Boltzmarm equation allows the product of 
maximum two distributions. T h i s / 2 - t e r m  can be used in the classical Boltz- 
mann temperature range only if its P�88 structure is significant and unique. 
At lower temperatures, including the quantum region for Boltzmann gases, 
the unrestricted use of this term does not cause any problems. 

4. D I S C U S S I O N .  B E Y O N D  T H E  S E C O N D  O R D E R  

The combination of the interaction function (2), (4) with the collision 
integral (3), (5) extends the Fermi liquid approach (1) to all temperatures 
and provides the description in the frame of transverse statistical qp. The 
zero-temperature attenuation and the I2-terms are simply the imaginary 
(pole) and real (principal) parts of the qp interaction function which coin- 
cides at T --- 0 with the exact irreducible vertex. 11 This picture holds up 
to the second order in the interaction. Unfortunately, there is no consistent 
diagrammatic derivation of the transverse transport equation in the third 
order. What  is known concerns only microscopic calculations at T = 0 and 
classical gases. 

In the Fermi liquid domain, the spin-up - spin-down asymmetry mani- 
fests itself in the temporal non-locality of the interaction. The equation in 
the Green's function G$$ (w, p; t, r) can be reduced to the transport equation 
in qp distribution nT$ (p; t, r) only if the shape of the 5-type temporal peak 
in G1. ~ (~, p) is preserved in dynamics. Starting from the third order in the 
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interaction, 11 the 5-peak splits into two on different energy shells (roughly 
speaking, this corresponds to different molecular fields for tilted spin-ups 
and spin-downs). The spin-up - spin-down asymmetry makes equations of 
motion for two peaks not identical except for homogeneous conditions when 
the equations can be brought together by going to the rotating reference 
frame (for inhomogeneous precession the rotation frequency depends on co- 
ordinates and momenta). Then the transverse transport equation is a set 
of two coupled equations in some partial ~ra.nsverse densitieso n This prob- 
lem arises only for transverse spin dynamics; in longitudinal dynamics the 
transition from microscopic description to statistical qp is fairly standard. 

The problems for high-temperature classical Boltzmann gases are dif- 
ferent, though the attempts to go beyond the Boltzmann equation also 
demonstrated the importance of temporal non-local and dissipative off-shell 
terms, is The results indicate that it is still possible to get a single dosed 
kinetic equation in the distribution function, though the results obtained so 
far concern only longitudinal dynamics where this fact is hardly surprising. 

The work is supported by NSF INT-9015836, DMR-9412769 and CNRS. 

R E F E R E N C E S  

1. A.E.Meyerovich, Spin-Polarized Phases of 3He, in: Helium Three, eds. 
W.P.Halperin and L.P.Pitaevski (Elsevier, 1990), pp. 757 - 879 

2. C.Lhuillier and F.Laloe, &Phys.(Paris) 43, 197,225 (1982) 
3. E.Bashkin Sov.Phys.JETP-Lett. 33, 8 (1981); Sov.Phys.JETP 66, 482 (1987) 
4. L.P.Levy and A.Ruckenstein, Phys.Rev.Lett. 52, 1519 (1984) 
5. J.W.Jeon and W.J.Mullin, &Phys. (Paris) 49, 1691 (1988); Phys.RewLett. 62, 

2691 (1989); J.Low Temp.Phys. 88, 483 (1992) 
6. K.F.Quader and K.S.Bedell, &Low Temp.Phys. 58, 89 (1985) 
7. A.E.Meyerovich, Physica B 169, 183 (1991) 
8. A.E.Meyerovich, Phys.Lett. A 107, 177 (1985) 
9. L.-J.Wei, N.Kalenchofsky and D.Candela, Phys.Rev.Lett. 71,879 (1993) 
10. J.H.Ager, R.M.Bowley, R.Konig and J.R.Owers-Bradley, J.Low Temp.Phys. 

1995, in print 
11. A.E.Meyerovich and K.A.Musaelian, J.Low Temp.Phys. 89, 781 (1992); 94, 249 

(1994); 95, 789 (1994); Phys:Rev.Lett. 72, 1710 (1994) 
12. A.A.Abrikosov, L.P.Gorkov and I.E.Dzyaloshinski, Methods of Quantum Field 

Theory in Statistical Physics (Dover, 1975) 
13. D.I.Golosov and A.E.Ruckenstein, Phys.Rev.Lett. 75 (1994) 
14. E.P.Bashkin and A.E.Meyerovich, Adv.Phys. 30, 1 (1981) 
15. E.P.Bashkin, Phys.Rev.Lett. 55, 1426 (1985) 
16. F.Lalo~, 1986. private communication 
17. A.E.Ruckenstein and L.P.Levy, Phys.Rev. B 39, 183 (1989) 
18. F.Lalo~, J.Phys. (Paris) 50, 1851 (1989); G.Tastevin, P.-J.Nacher, and F.Lalo~, 

&Phys.(Paris) 50, 1879 (1989); 50, 1907 (1989) 


