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Ballistic Transport in Narrow Channels and Films 
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Department of Physics, University of Rhode Island, Kingston, RI 02881, USA 

We present a simple description of ballistic transport in systems with random 
rough walls. All characteristic parameters, including the mean free path and 
localization length, are expressed explicitly via the correlation function (cor- 
relation length R and amplitude g) of surface inhomogeneities. Scattering by 
surfaces inhomogeneities in channels with width L creates a new mesoscopic 
transport length of the order of (L2R/g 2) f (R/A) . The function f has a min- 
imum when the particle wavelength A ~ R. The transport problem includes 
possible quantization of motion across the channel. The calculations are per- 
formed with the help of canonical coordinate transformation which reduces a 
transport problem with rough random walls to an exactly equivalent problem 
with ideal flat walls, but with random bulk distortion. Applications include 
transport in thin films, porous media, localization and slip effects, etc. 

1. I N T R O D U C T I O N  

Boundary scattering is important for many branches of physics espe- 
cially at low temperatures when the (quasi-)particle mean free paths are 
large. Boundary roughness leads to chaotization of motion and additional 
diffusion along the walls. This t ransport  effect should be described in terms 
of correlation function of surface inhomogeneities. However, such a descrip- 
tion is still missing, at least in an accurate and consistent form. Below we 
solve this long-standing problem for ballistic particles. 

Usually, boundary problems are studied using either an "exact" bound- 
ary condition which leads to an unsolvable integro-differential t ransport  
problem, or an over-simplified Fuchs boundary condition which balances 
specular and diffuse reflection. One can also 1-3 substitute the boundary 
roughness by some random bulk potential near the surface, and to express 
the t ransport  characteristics via the parameters  of this potential. Though 
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this approach reproduced many features of transport processes, the effec- 
tive potential remained unknown and could not be reconstructed neither 
theoretically nor experimentally. 

We developed a different approach. We use a canonical coordinate trans- 
formation (similar to the Migdal transformation in nuclear physics) so that 
to make the boundaries flat, and look for the effect of this transformation on 
transport.  [Similar transformation was used earlier 4-7 for diffraction pa~terns 
of electromagnetic and acoustic waves near rough surfaces]. As a result of 
this transformation, the bulk Hamiltonian acquires additional random terms 
which contain the information on boundary roughness. This bulk distortion 
is expressed via the shape of the surface and has a much more complicated 
functional and operator structure than the effective potential in Refs. 1-3 The 
bulk distortion can be introduced into perturbative collision integral, which, 
in turn, can be translated into transparen~ expressions for ~ranspor~ coeffi- 
cients. The formalism is very simple even in rather convoluted situations. 
We are able to express all transport characteristics explicitly through the 
shape of the rough surface, i.e., the correlation function of surface inhomc~ 
geneities. Some preliminary results were recently published in s (see alsog). 

We will neglect all bulk relaxation processes. Then the random bound- 
ary scattering becomes the main source of the formation of the mean free 
path along the walls. The method can be applied to thin films, narrow chan- 
nels, ballistic transport in porous media with high porosity~ localization and 
mesoscopic effects, etc. 

2. C O O R D I N A T E  T R A N S F O R M A T I O N  A N D  B U L K  
H A M I L T O N I A N  

We consider a film (or a 1D channel) of the average thickness L with 
the boundaries x = +L/2 :F ~1,2(Y, z) with small random inhomogeneities, 
~1,~2 << L, (~1) = (@) = 0. Since there is no bulk relaxation, the results 
depend only on the function ~ (s) = ~1 (s) + @ (s), i.e., on the correlation 

function ~ (q) = ~11 + @2 + 2~12, 

~ik (181 - -  S2I)  = ( ~ i ( S l ) ~ k ( S 2 ) )  , ~ik (q) = f d2s eiq's/~ ~i k (s) (1) 

We will study Gaussian correlation function, 

~(s) - gUe xp  ( s 2 / 2 R 2 ) ,  ~ ( q ) =  27rgUR2exp (-q2R2/2hU) (2) 

and its 5-type limit for very small correlation radius R, ~ (s) = ~2R25 (s)/s.  
The coordinate transformation 

X =  L[x- �89 y = y ,  Z = z  (3) 
L -  (~t(Y,Z) + ~2(Y,Z)) ' 
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makes the both boundaries fiat, X = 4-L/2. This transformation should be 
supplemented by the conjugate transformation of momenta, 

] ! L X ~  + -~ L(~2y -- 
Px= PXL_~(y , z  ), Py= Py-}- Px L - ~ l ( y , z )  (4) 

and the same for Pz (~1,2y = 0~1,2/c9y). In new variables, the quadratic 
Hamiltonian acquires some random "perturbation" V, H = fi2/2m = 
_fi2/2rn+ f" with (V} = 0. In relatively thick and smooth films, ~/L, 

~ l , 2 y ,  ! t ~1,2z << 1, 

(5) 

Note, that the exact Hamiltonian contains not only the perturbation V (5), 
but some extra terms with ~ - ~ .  However, in the absence of bulk relaxation, 
these terms disappear from the transport equation. 

In the ultra-quantum case (thin films), the motion across the film is 
quantized with P~ = ~rhj/L. The distance between states with different 
j can be so large that the interstate transitions are effectively suppressed. 
Then the motion of particles a]ong the film is 2D motion in states j in 
some random potentials v(J). When P~ -- 7rhj/L is much larger than the 
momentum along the film Q = (Py, Pz) 

V (j) (y, z) ~-- mL (6) 

If Px = ~hj /L  >> Q, but the interstate transitions are not suppressed, one 
cannot ignore the terms with Q in Eq.(5). 

In classical mechanics the Hamiltonian (5) is equivalent to random 
coordinate-dependent anisotropic effective mass, 

7P,, my  x z  

This analogy can be useful for numerical analysis of transport.  

3. T R A N S P O R T  C O E F F I C I E N T S  

The perturbative collision integral for particles with Harniltonian (5) 

Lcou -: / W (P, P ' )  [n(1 - n') - n'(1 - n)] d3p'/(2~rh) 3 (8) 
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is determined by the probability of transitions between states with different 
momenta (averaged over ~) W (P, P ') ,  which, in turn, is given by the square 
of the matrix element of the perturbation (5). For (quasi,)classica] motion, 

W (P, P ' )  ( c -  • 
47rL2rn 2 

f~2 :P, D,~] 

In the ultra-quantum case with discrete states j for the motion across the 
channel and suppressed interstate transitions, the collision integrals Lj are 

Lj 1 fd2Q'r ') -w(q))8(ej,cr-cjq) 
2~h3m2L 2 j, 

In the classical case the conductivity of Boltzmann particles is 

32 e2L2R2N h 
G = ~r3/2 ~ x f s  (x), x = (4mTil/2R, (9) 

while in degenerate systems 

x/~e2L2 2~ v~PF R (10) 

Functions fB (x) and fF (x) (Figs.l,2) are some hypergeometric integrals. 
Both functions fB,F (x) .4  c~ for x --~ 0 and x -4 cx~. Eqs.(10) correspond 
to the following effective surface-induced mean free paths/2 along the film: 

16 LuR 12x/~ L2R 
~ B  - -  71.3/2 "-~ fB (x), .l~ F - -  "-~ -'~ fF (X) (11) 

The argument of the functions fB,F (x) is the ratio of the de Broglie wave- 
length A to the correlation radius of the surface inhomogeneities R, and 
the wan-induced mean free path is s ,'~ (L2R/g 2) f (R/A). The mean free 
path and the transport coefficients are quadratic in the film thickness; this 
conclusion agrees with experimental data. 1'1~ 

It is not surprising that the most effective chaotization of motion (the 
shortest mean free path) occurs at R/A ~ 1. The long-wave limit R/A .4 0 
corresponds to quantum reflection of particles when functions fB,F increase 
and/2  + (x~. This is a transport manifestation of the fact that reflection of 
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Fig. 1. Function fB(x) 
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Fig. 2. Function fF(z) 
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long-wave particles is effectively specular. In the opposite case, R/A  --~ c~, 
the increase of the mean free path means that the reflection from wider 
(smoother) inhomogeneities is also specular. 

In the ultra-quantum case of very thin films, the conductivity of degen- 

erate particles on each quantum level is 

167fC2R 2 ~ 1F1 (3,2,-47rN(3)R ) 
(for Boltzmann distribution the expression is similar). 

Other transport coefficients are calculated in the same way. In essence, 

we calculated the mean free path/: along the surface imposed by scattering of 
particles by surface inhomogeneities. This information on wall-induced mean 
free path and diffusion coefficients is sufficient for description of localization 
processes and quantum interference corrections to transport. For example, 
the localization length for different quantum states in thin films is T4(J) 

/20) exp (Tr2L~(J)/A). On the other hand, the scattering by random boundary 

inhomogeneities can play the role of" elastic "impurity" scattering necessary 
for the formation of unusual localization regime ll in quantum dots with 
different length scales in different directions. 

More detailed results will be published in. 9 The work was supported by 
NSF grant DMR-9412769. 
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