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We describe the effects of boundary slip in spin-polarized quantum liquids 
and gases. The slip coefficients in boundary conditions form a 3 x 3 matrix. 
The off-diagonal coefficients are expressed via each other with the help of the 
Onsager relations. We calculate accurate lower and upper bounds of all slip 
coefficients for polarized degenerate Fermi liquids and for dilute gases at 
arbitrary temperatures. The calculations are based on the transport equation 
for spin-polarized systems with diffuse boundary conditions. The results 
for gases are especially simple in the limiting cases of low-temperature 
degenerate systems or in the high-temperature classical Boltzmann regime. 
All slip coefficients are proportional to the mean free path and increase with 
increasing spin polarization. As a by-product the theory describes the slip 
effects in binary mixtures of classical gases or Fermi liquids when the role of 
spin polarization is played by the concentration of the mixture. 

1. I N T R O D U C T I O N  

Physics of spin-polarized quantum systems is a rapidly developing 
branch of condensed matter physics at the intersection of atomic and low 
temperature physics. As always, such a fast development has its own draw- 
backs. Though we now understand, at least qualitatively, the vast majority 
of quantum effects in spin-polarized systems (see, e.g., reviews1-9), some 
crucial parts of the overall picture are still missing. 

The most important of these missing parts is the systematic description 
of boundary effects. While the bulk properties are studied in detail both 
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experimentally and theoretically, the boundary processes are touched only 
occasionally. Without a proper understanding of the boundary processes it 
is unrealistic to expect reliable results especially at very low temperatures 
when a rapid increase in mean free path makes the interaction with bound- 
aries more and more crucial. 

In this paper we focus on an important class of boundary phenomena, 
namely, on the boundary slip. This choice is not accidental, and is dictated 
by current experimental and theoretical needs. For technical reasons, 1.4, s. lo 
the experimental cell with polarized helium or hydrogen is often connected 
by a long diffusion channel with a chamber with different temperature 
and/or magnetization. These large gradients cause spin, thermal and mass 
flows. Though the source of these diffusion currents seems to be rather 
technical, such currents are practically unavoidable since the gradients 
always exist in experiments with systems in long-lived quasi-equilibrium 
polarized states. In the case of large gradients even a seemingly negligible 
boundary slip results in large mass, heat and spin flows through boundary 
layers. The thickness of these boundary layers is determined by the slip 
length ~, and is proportional to the mean free path l. Since the mean free 
path and, therefore, the thickness of boundary layers in quantum gases 
increase dramatically with spin polarization, 9' 1, the accurate interpretation 
of the existing experiments should be based on the use of slip boundary 
conditions. 

From a theoretical point of view, the study of boundary slip in spin- 
polarized quantum systems has an additional attraction. In ordinary 
situations, one deals with two gradients (driving forces): gradients of mass 
velocity and temperature, and two responses: boundary mass and heat 
flows. Therefore, one has four slip coefficients that relate the responses 
(flows) to the driving forces (gradients). As a result, the slip coefficients 
form a 2 x 2 matrix [-two off-diagonal coefficients obey the Onsager rela- 
tion and are not independent]. In spin-polarized quantum systems one has 
an additional driving force--the magnetization gradient, and an additional 
response--the boundary spin current. Now the slip coefficients form a 3 x 3 
matrix with 3 independent off-diagonal coefficients, resulting in more 
diverse phenomena. 

Another attractive feature of spin-polarized quantum systems is the 
possibility to pursue a model-free description. The ultra-quantum nature of 
low-temperature helium and hydrogen systems allows one to develop a 
fairly accurate theory despite all the complexity of the underlying processes. 
What is more, the spin polarization makes the macroscopic manifestations 
of quantum phenomena more noticeable and accessible than in more 
traditional quantum systems. On the other hand, a consistent experimental 
verification of the theoretical analysis becomes more straightforward since 
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some of the most accurate experimental approaches are based on the NMR 
technique. 

The exact values of slip coefficients are seldom known. The most 
detailed information was obtained for rarefied gases ~2-18 with possible 
applications to vacuum technology, high altitude flights and space research. 
We know of very few experimental and theoretical attempts (see Refs. 9, 11, 
and 19-26 and references therein) to describe slip phenomena in quantum 
liquids and gases. 

In this paper we study boundary slip in spin-polarized Fermi liquids 
and quantum gases. The spin polarization makes the systems analogous to 
two-component mixtures (of up and down spins). As a result, the number 
of equations doubles. For Fermi liquids the calculations are based on a 
gas-like character of the quasi-particles. Additional simplifications are 
related to large wavelengths of particles of quantum gases. 

We want to determine the slip length, derive proper Onsager relations, 
calculate the values of slip coefficients, and to apply the results to 
longitudinal spin diffusion in spin-polarized quantum systems such as 
normal liquid 3HeT, liquid and gaseous 3He~'-4He mixtures, 3He]" gas, and 
H$ and D] systems, etc. As a by-product, we will get a theory of slip 
phenomena in binary mixtures of quantum or classical gases for which the 
concentration of the mixture plays the role of the spin polarization, while 
the spin diffusion current should be substituted by the usual diffusion. 

We start from the general spin diffusion equations of Ref. 11 with 
viscous renormalizations of the type 27 for spin pressure diffusion terms (see 
also the review9). This allows us to get proper Onsager relations and to 
evaluate the influence of slip terms on hydrodynamic and diffusion flow in 
spin-polarized systems. Our calculation of slip coeff• is based on the 
methods developed in Refs. 22 and 24. We use the transport equation in 
relaxation time approximation with diffuse boundary conditions. The 
accuracy of the relaxation time approximation for spin-polarized quantum 
gases and liquids is reasonably high (see, e.g., reviewg). The applicability 
and the limitations of the diffuse boundary conditions are less clear. 2~ 26 
However, the diffuse boundary condition is still one of the simplest 
universal boundary conditions which combines effects of surface roughness 
and energy and momentum accommodation. There are certain indications 
that these effects may have somewhat different influence on boundary 
slip.19, 20. 26 We plan to return to this problem later. 

2. MAIN DEFINITIONS 

The presence of a new variable, namely, the spin polarization, leads to 
the dependence of already known slip coefficients on spin polarization or 
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magnetic field, and to the increase in number of equations with several new 
coefficients. 

We are interested in "longitudinal" effects which are not accompanied 
by changes in the direction of magnetization. For such processes, a spin- 
polarized Fermi liquid (or a gas) is similar to a binary mixture of spin-up 
and spin-down components. 9 Then most of the effects can be described 
using the terminology inherent to binary mixtures. The degree of spin 
polarization 0~ plays a role similar to the concentration of the mixture of 
the (spin) components c which are denoted by the indices (+) :  

re+N+ N + - N _  c/m+-(1-c) /m_ 
c = ~ - ( 1 )  

m+N+ +m N_' N+ +N_ c/m+ +(1-c)/m 

It is convenient to use as an independent variable not the concentration c 
or polarization ~, but the chemical potential # which is conjugate to c and 
is expressed via the chemical potentials of (spin) components #_+ as 

1 1 
V# = V#+ - V#_ (2) 

m+ m 

We are interested mostly in spin-polarized quantum gases for which, with 
a rather high accuracy, m+ = m _ .  9 However, our results are applicable 
for any two-component gases for which masses of particles belonging to 
different components m+ and m_ may be different. The same is true for 
spin-polarized Fermi liquids. For this reason, we will keep two different 
masses in Eq. (2). 

The possible difference in masses of particles from different spin com- 
ponents forces us to make the following choice. We can work either with 
mass concentration c and mass currents, or with particle concentration 
(like ~) and particle flows. The former approach is standard for 
hydrodynamics of mixtures, while the latter seems to be more suitable for 
spin dynamics. Though the results for both approaches are similar, the 
transition from one representation to another can be rather annoying, 
especially if m+ v~ m_. Throughout this paper, in contrast to Ref. 11, we 
will follow consistently the hydrodynamic approach and work with mass 
concentration and mass (diffusion) currents exclusively. 

Bulk mass diffusion current is defined through the mass currents of the 
spin components as 

] o ~ j + - - ] _  = --DpVc, (3) 

and can be expressed via Vtt using the relations 

VN+=-Vt t_+  ['j d3p af(+~ ) (4) 
- (21th) 3 c~e 
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where f(_+o) are the equilibrium distribution functions for different (spin) 
components. Note, that the spin diffusion current j~ and the spin diffusion 
coefficient D, are usually defined in a form which is somewhat different 
from Eq. (3): 

L - j + / m + - j _ / m  = - D s N  V ~  

Slip boundary conditions express boundary values of hydrodynamic 
flows through the gradients of hydrodynamic variables. In case of spin- 
polarized systems, the general slip boundary conditions should have the 
following form (cf. Refs. 11 and 28): 

du,(z  ~ 0)  
IIt(z = 0) = (Xll ~Z '[-~176 

J~) (~  = O) = ~:1 
~u, (z  - ,  0)  

c~z 
.-}-~22 ~tll(z=O)+~23 ~tT(z=O) (5) 

Ql~)(z = 0) = ~31 
0,, ,(z --, 0)  

~z 
+ ~32 V,# (z = O) + ~33 V~ T(z = O) 

where the index t marks the components of vectors along the boundary 
z = 0, u is the hydrodynamic (mass) velocity, Jl  ~) and Q(t s) are the additional 
surface mass diffusion current of spin components and heat flow caused by 
the boundary slip, ~-k is the matrix of slip coefficients. The off-diagonal 
components of the matrix aik are related to each other via Onsager 
relations (see Appendix A). The currents j(s) and Q(S) are defined as 

E J(~)= dz [jD(z)--jD(oe)], Q(S)= dz [ q ( z ) -  q(oo)] (6) 
" : 0  " 

where q is the density of the bulk heat current. In what follows, we will 
determine the values of the slip coefficients ~i,- In linear systems we can 
calculate all slip coefficients one by one, independently of each other. 

3. SLIP LENGTH AND RELATED COEFFICIENTS 

Let us start from the most commonly used coefficient, namely the slip 
length ~ = ~11. The slip length describes the difference between the real 
boundary value of the mass velocity u(z = 0) and the hydrodynamic bound- 
ary condition u(0)=0  (see Fig. 1). The diffuse scattering from the wall 
z = 0 affects the velocity profile u(z)= f~u(z). The deviation g~(p) of the 
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Fig. 1. The schematic velocity profile u(z) near the wall z = 0. The slip length ~ = all is deter- 
mined by the intersection of the tangent to the curve with the axis z. 

distribution function f~(p) of the type e (spin-ups or spin-downs) from the 
local equilibrium f(~~ pu) satisfies the transport equation 

V~z-Vzp~u'(z) af}~ -~2~*ge (7) 

In many cases, including dilute spin-polarized quantum gases and 
Fermi liquids, the matrix of inverse relaxation times ~ is diagonal with 
known diagonal elements 1/~+ and 1 / z  (see Refs. 2 and 9). However, to 
keep the results applicable for arbitrary two-component mixtures, we will 
work with an arbitrary symmetric matrix %1. The characteristic numbers 
for Eq. (7) are 

1 ( 1  + 1 ) l I ( 1  1 )  2 4 ]~/z + _ _  
' "C+ T _ + A  

and the general solution of Eq. (7) has the form 

' ~ 0fP~ - ~  l (z -  ~')/~= (8)  
g~(z) = e-~P ~mg~(0) + oo ~ dz'p~u'(z') ~ e 

with the matrix 

e - G lz/~ --- o~v"- 1 e a,z/ . . . .  uv~ (9) 
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where (7 is the unitary matrix which diagonalizes ~-1. The diffuse scatter- 
ing by the wall corresponds to the following boundary conditions at z = 0: 

0f~ ~ g~(z = 0, v~ > 0) =pxu(0)  - ~  

Of C~ f :  eGIZ'/~ g~(z = O, Vz < o) = - p x  ~ dz' u'(z') 

(the second equation is equivalent to the condition g(Vz < O, z ~ oo)= 0). 
The solution (8) of the transport equation (7) with these boundary condi- 
tions is 

me(o) v 
g~( z, V z > L e -  r176 + - z )/vz 1 . ( 0 )  - ' 'z  

(lo) 
o:y> C g~,(z, v z < O) = - p ~  ~ • dz' u'(z') e ~  '(~' = ~)/" 

Following Refs. 22 and 24, we parametrize the derivative of the mass 
velocity u(z) as 

u'(z) = u~[1 § ~9(z)] (11) 

Then, by definition (see Fig. 1), the slip length ~ = ~11 is equal to 

= u(O) + ~ 
Jo dz r (12) u~ 

where u~o = u'(z ~ oo), and the function $(z) is positive and small. 
Since all the currents are time-independent, the total momentum flow 

of both components satisfies the following equation: 

~nx'  _ an-~(z) - o (13) 
~r~ r 

and is constant across the liquid. At z ~ ~ this flow is equal to - qua,  and 
therefore, can be written at arbitrary z as 

. d3p 
rIxz= - q u 2  = ~ j ~ V~px g~(p, z) (14) 

where r/= r/+ + q_ is the viscosity [definitions of partial viscosities of spin 
components r/~ and their values for two-component quantum liquids and 
gases are given in Refs. 9 and 11 ]. 
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With the help of the functions Ll,~(z), 

fv dap OleO) 2 n n--1 --v~-lZ/Vz L~)(z) ~>o(2rch)3 ~ pxv~r~y e p (15) 

Eq. (14) can be written as 

-.u~ = ~ { -  ~o~ ~,~z~- ~ ~,~o~ + ~ ~,~z~ 

;: } - u "  dz' O(z')L]~)(Iz-z '[) (16) 

On the other hand, at z ~ oo the derivative Og/Oz = 0, and, according to 
Eq. (7), 

0f~o), v 
g~(oo)=u" z~,~-~a t, x ~ (17) 

leading to the following expression for partial viscosities through the 
functions L,: 

dap3p~v ~ - f  (2-~-~ g~(~) = 2L~(0) (18) 

Eqs. (12) and (18) should be substituted into Eq. (16): 

~ E L~)(z) - Y~ L~)(z) 

fo = - dz' O(z ' )~  [L]~)([z-z ' l )-L]~)(z)]  (19) 

or, at z = 0, 

r162 0r 

= - d z '  ~ , ( z ' )  y~ [Li~)(z ') - L ~ ) ( 0 ) ]  (20) 

We can use this expression to calculate a lower bound for ell. Since 
the expression in square brackets in Eq. (20) is obviously negative, and 
0(z) > 0, the slip length satisfies the following inequality: 

2~ LP)(O) (21) 
0~11 > ~ L~)(O) 
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The values of L,(0) for different temperature regimes are given in 
Appendix B. 

To determine an upper bound for the slip length cq~, we should 
integrate Eq. (19) using the identity dL(,[')(z)/dz = -L~_) a(z): 

<,  Z r~ (o )  - Y~ L~(o) 
~r ct 

f) = dz' O(z') 2 [L~'( ~ ' ) -  L~'(O)] (22) 

This immediately gives us 

y~.~ (~) L3 (0) 
~1' < Z~ L~(0) (23) 

The functions L,(0) are given in Appendix B. In the same way as in Ref. 22, 
we can find a somewhat improved lower bound: 

1 Z~ L~(0)  1 ~x ~ L(~0~3 , , 
~lt > 2 ~ L]~)(0) t-2 Z~ L(2~)(0) (24) 

Let us turn now to the off-diagonal slip coefficient ~21 (5). The bulk 
mass diffusion current for spin components (3) has only the x-component 
and can be defined as 

Jn =J+ --J--, j~ = f d3p (2--~pxg~,(p, Z) (25) 

with functions g~ given by Eq. (8). Obviously, there is no diffusion current 
at z -* 0% and all spin diffusion (25) is caused by the surface slip exclusively. 
The total additional surface diffusion current j(s~ (5), (6) gives the slip 
coefficient c~2t = J(S)/u'oo. 

After some simple transformations with the help of Eqs. (10) and (11), 
the expression for diffusion current reduces to 

L(z) 
t 

lgoe 
u(0) K~,)(z) + K~2,)(z) u" 

;: J7 - d z ' $ ( z ' )K~) ( z - z ' )+  dz'$(z')K~')(Jz'-z[) (26) 
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The functions K. in Eq. (26) are very similar to the functions L,  above, 
Eq. (15): 

~ -  (o) 
f d3p 'a~ -2v'~-t'r" le-~'~-~/~ (27) 

K"(~)(z)=- ~> o (2rch) 3 & t'~ ~ ~'/ 

After integration in Eq. (6) we get 

J(~)(z) u(0) [K2(~)(z ) _ K2(~)(0)_ ] _ [K~) (z )_  K~)(0)] 

- f2 dz" fj'  dz' O(z') K[~)(z"- z') 

r +Jo " dz'O(z')K~)([z'-z"[) (28) 

In the last two integrals we can change 
perform a simple integration over z": 

p 
I/oo 

the order of integration and 

u(0) [K~CO(z) _ K~,I(0) ] _ [K].)(z) _ K;)(0) ] 
u~ 

- dz'tp(z')K(z~)(O)+ dz'O(z')K(z~)(z'-z) 

f~  f~ K 2 (0) + dz'tp(z')K(z~)(Iz'-zl)+ dz'tp(z') (~) 

- f o  dz' O(z') K~)(z ') (29) 

After some algebra, the last equation is transformed to 

J~')(z) 
J 

Ucc 
u ( 0 )  [ K 2 ( . ) ( z  ) _ K2(.)(0).  ] _ [ K~ . ) ( z )  _ K ~ ) ( 0 ) ]  
u 2  

+ dz' t~(z')[K(2~)(Iz-z'l)-K(2~)(z')] (30) 

and at z ~ ov reduces to the following form 

_JT(~)-J2)(~) u(O) 
= - - -  [ K ~ -  ( 0 )  - r 7  ( o ) ]  tx21 - U t U• 

+ Kf(O) - K;(O) - fo  dz' O(z')[Kf(z') - K2 (z')] (31) 
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Now we can substitute u(0) by a~l using Eq. (12): 

~21 ---- - -  ~11  [ K 2 +  ( 0 )  - -  K~- (0)] + K~- (0) - K;(0)  

- I o  dz' ~(z ' )EK~ (z') - K2 (0) - K ;  (z') + K ;  (0)2 

With the help of Eq. (22) this equation can be transformed into 

[-L+(O) + L2- (0) K~-(O)- K~-(O) 
~21 = --(K+(0)--K~-(0))[ L~-(0)+L~-(0) K+(0)-K~-(0)  

( L~ (z) + L;(z)  _ K;  ( z ) -  K;(z)']~ f dz ~(z) 
J \ L ;  (0) + L~ (0) K;  (0) - K;  (O)/J 

65 

(32) 

It can easily be checked that the integrand in this equation is positive. This 
gives us an obvious upper bound for ~zx: 

FL~(0)+L~-(0) K~-(0)-K~-(0)] (33) 
a21 < - ( K ; ( 0 ) - K ~ - ( 0 ) )  [ L;~(0)+Li_(0 ) K~-(0)-K~-(0)J 

We can get another bound by writing Eq. (26) 

0 > ~ >  -a~I[K+(O)-K~-(O)J+Kf(O)-K;(O) (34) 
Ucc 

On the other hand (see Fig. 2), 

1 j(s) = jD(Z) dz < ~jD(0) ~ < 0 (35) 

where the length ~ is given by 

jD(O) 
iS(o) 

According to Eq. (26) (cf. Eq. (34)), 

j~)(0) 
! 

/,toe 
- - <  ~1~ [K~-(0)- Ko (0)] - [K~-(0)- K~- (0)] 

(36) 
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111 
Z 

J D (0) 

Fig. 2. The schematic profile of the diffusion current j~(z) near the 
wall z = 0. The current density at z-~ oo is zero. The total slip diffu- 
sion current j~s) is the area between the curve and the axis z. The 
length [ (36) is determined by the intersection of the tangent to the 
curve and the axis z. 

This  condi t ion ,  wi th  the help  of  Eq. (35), gives ano the r  upper  b o u n d  for 

0(,21 

1 j~(o) 
0~21 < t -! 

2 uo~jo(O) 

1 [ ~ a , ( K ; - ( O ) - K i - ( O ) ) - - ( K f ( O ) - K 2 - ( O ) ) ]  2 (37) 

2 ~ , [ K f f 2 ( 0 )  - K o 2 ( 0 ) ]  - ( K ~ - ( 0 ) -  K~- (0)) 

O the r  b o u n d s  for the coefficient a21 can be ob ta ined  by ca lcula t ing  the 
b o u n d s  for the  coefficient ~12 a n d  using the Onsager  re la t ion  between the 

coefficients ~21 and  ~12 (see Append ix  A, Eq. (A.16)): 

(x21 = ?]~ 12 ' [  ~ 2p+p_~ p rt . . . .  

The  lower  b o u n d  for ~12 and,  therefore,  for ~21 (38), will be given in the 

next  Section.  
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Now let us turn to the coefficient a31 in the boundary conditions (5). 
The partial heat currents of the spin components are defined as 

. 

= j Vxe(p ) g=(p, z ), q = q +  + q _  (39) 

where g+ are again the solutions of the transport equation (10). We will 
define e3~ through the surface heat flow Q(S) (6), a31 = Q(~)/u'~. The calcula- 
tion of the lower bound for c~31 is exactly the same as for ~2~- Then the only 
differences between the bound (33) for ~21 and the corresponding equation 
for ~31 are the sign between the contributions spin-ups and spin-downs and 
the use of integrals M +, 

M~(~)(z) = --;,, d3p of~O) 2 2n- -  le--r~lz/v z 
~>0 (2gh) 3 0 e  V pxVz 17~n~- (40) 

instead of K -+ (27): 

2a3j> -~H[Mf(O)+M~(O)]+M~-(O)+M~(O) (41) 

We can easily get a bound which is similar to Eq. (37): 

1 q2(0) 
2c~3~ < 2 u~q'(O) 

1 Eatl(M~ (0) + M~- (0)) - ( M r  (0) + M~- (0))]  2 
2 0~11EM-~2(O) + Mo2(O)] - (M~-(O) + M~-(O)) 

(42) 

Later we will determine another upper bound for c~3i by calculating 
the upper bound for ~13 and using the Onsager relation from Appendix A. 
This will be done in Sec. 5. 

4. SPIN DIFFUSION AND SURFACE SLIP 

The next step is to calculate slip coefficients related to spin diffusion, 
0~22, ~12, and ~32, Eq. (5). Here we assume that the bulk gradient of spin 
polarization is associated only with Vxp(z), Eqs. (2) and (3). Then the 
transport equation assumes the form 

Vz ~-~ - vx V~ #~ ~?f~o) = _ ~ l g ~  (43) 
0e 
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with the diffuse boundary conditions: 

g~(z = O, v~ > O) = O, 

zc~fl z Iw g~(z = O, v~ < O) - ae dz' V~ #~ - -  e " 
Vz 

(44) 

The solution of Eqs. (43) with the boundary conditions (44) has the form 

g~(z, Vz > O) = v af~~ [~ dz' z)/~z - -  ~ V ~ e - ~ ; (  z -  
x a~ Jo 

a f ro )  .oo dz '  
g ~ ( z , v ~ < O ) =  Oe J~ v~ - -  v x  - -  - -  V x  # # e  ~-p~(~' - ~)/~ 

(45) 

The mass and heat currents for different spin components, Eqs. (25) and 
(39), will be expressed via integrals 

= -  - -  p~VxV~ ~ " Le-r 1 
(v.~(z)J :>o (2~-) ~ o~ r v ~ 

(46) 

With the notations 

vx u~(z) = V~ u.(oo)(1 + ~(z) )  (47) 

the currents (25), (39) can be written as 

L ( z )  
2Q~(0) + Q~z)(Z)- dz' ~b~(z') Q ~ ( l z - z ' l )  

q , ( z )  r ~  
= - 2 V~(O) + V~(z)  - | dz '  c}~(z') V~([z zII ) J 

v . # . ( ~ )  J 0  

(48) 

where ~b is negative, ~b(z)< 0, and small 
Let us now use the condition that the total bulk mass current 

j = j + + j_ goes to zero at z ~ c~, while the total mass diffusion current of 
spin components, J D =J + --J is non-zero and equal to --pD Vx c: 

Q~-(0) V~ # +(oo) + Q~(0) %/~_(oo) = 0 

- 2(Q~ (0) Vx # + ( o o ) -  Q~ (0) Vx/~ (0o)) (49) 

= - - p D \ ~ c / e ,  yV~It(oO) 
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where Vx I~ - Vlz +/m + - VI~ _/m _, Eq. (2). According to Eq. (49), 

Vx/2+(oo) m TQ~ (O) 
- • Vx/~(oo)  (50)  

m+ m+Q~(O)+m_Q2(O) 

The bulk spin diffusion coefficient D can be expressed via the functions Q, 
a s  

(~#~-1 Qf(O) Q2(O) 
pD \-~c/e, r = 4m +m _ (51) m+Qf(O)+m_Q2(O) 

Now we can estimate the coefficient (x22. The part of the total spin 
diffusion current, which is related to the surface slip, is equal to 

4 jo(z) - jo(oe)  
p D( ~?c/O# ) Vx I~( oo ) 

_ Qf(z)  Q;(z)  (~ Q~(Iz-z'l)  
Qf(0~) -t J0  dz' qk +(z ') Q~-(0) Q~-(0) 

(~ dz' Q ( ( [ z -  z'[) ~b- (z') (52) 
Jo Q~-(0) 

By definition, 

a22 Vx #(oo) = J(S) =- (jD(z)--jo(oo))dz (53) 

and, according to Eq. (52), 

4a22 Q;(O) . Q3(o) , (~ [Qf(z ' )  ] 
pD(Oc/O#) Q + ( O ) + Q - - ~ - r J o  dz ' [_Q--~  2 fb+(z ') 

fo dz' [Q~(z') ] + I_Q--~  2 ~-(z') (54) 

This immediately gives us the lower bound 

4a22 > Q f ( 0 )  . Q3(0) 
pD(Oc/Sp) QJ-(O) + Q2(0) 

(55) 
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On the other hand, integral (53) can be estimated in the same way as 
in Eqs. (35) and (37): 

1 ( j o ( 0 ) - j 9 ( o o ) )  2 

1 ~c Qf(O) Q2(O) 
>-~ pD 0---~ Q~(O) Q2(O)+ O~-(O) Q~(O) (56) 

Now let us estimate ~2- According to Eq. (48), the full current is 

4(j+(z)+j_(z)) Q~(z) Qz(z) f /  dz' Q+(Iz-z'l) 
pD(Oc/~#)Vx~(Oo)-Q~(O--) Q2(O)" Q~(O) (b+(z') 

By definition, 

r~z Ql(Iz-z'l) + |  dz' ~b-(z') (57) 
Q2(0)  J 0  

C r  ( 0 ) ] ( m + N + + m  N_)  t (58) 

Numerical analysis of Eq. (57) at z = 0 shows that 

�9 12 > 0 (59) 

This is equivalent to the following bound for ~21 (38): 

(60) 

The additional bounds for e12 are given by the bounds (33), (37) for cx21 
and the Onsager relation (38). 

The total heat current (39), (48) is very similar to Eq. (52) and is 
equal to 

8(q+(z)+q_(z)) _ Vf(z) Vz(z) - f o  dz' V+([z-z'I) qk+(z') 
pD(Oc/Ou)V~#(r Q+(O) Q2(O) Q~(O) 

+ f /  dz' V;(iz-i'l) ~ (z'). 
O 

(61) 

Therefore, the coefficient ~r which is defined similarly to Eq. (53), has the 
upper bound which is similar to Eq. (55): 

1 [- V~- (0) V3 (0)] (62) 
~32 < 4 pD(8c/8#)~,, r LQ+ (0) Qy (0)J 
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The lower bound can be obtained from the lower bound for ~23 using the 
Onsager relation TIX23 ~ ~X32. Another bound is similar to Eq. (56): 

1 (q(0) - q(oo)) 2 
~32 ~ - - -  2 Vx/2(c~) q'(O) 

i pDQ;(O) Q2(O ) (8c )  
> 2 v~-(o) Q - - ~ ) ~  ~ Q ; ( O )  ~ P.T 

5. THERMAL DIFFUSION AND SURFACE SLIP 

In this Section we will calculate slip coefficients related to thermal 
diffusion, a33, ~a3, and a23, Eq, (5). We do not consider the temperature 
jump (an analog of Kapitza resistance in the kinetic theory of gases), and 
assume that the sole bulk gradient is V~ T(z). The transport equation has 
the form 

8g~ 8f (~ 
v.-~z - V ~ ( ~ - # ~ -  Ts~)V~(ln T) "~85 . . . . .  - "c-l~<n gn (63) 

with the boundary conditions: 

g~(z = 0, v~<0) = - - - -  

g~(z = 0, v . > 0 ) = 0  

, ,  

70 dz'V~(ln T ) ( ~ n - # n -  Tsn)--e~.n :1": 
Vz 

(64) 

where s+ is the entropy per particle with spin +1/2. The solution of 
Eqs. (63) and (64) has the form 

0fJ ~ ~: dz' 
g~(z, v: > O) = vx ~ 30 ~ (~  - #~ - Tsn) Vx(ln T) e -T.~'(.- .')m 

8f~o) ~o~ dz' 
g.(z, v.<O)= - -Vx-~e  j. --~(e~-#~- rsn)7~(ln T)eTff ~'' ")/'" 

(65) 

The mass and heat currents for different spin components (25), (39) 
contain integrals similar to (15), (27), (46) 

S~(z)J .>o(2~h) 3 8e e~pxVxV: z~. I e v2 (66) 

The temperature gradient is parametrized as in Eq. (47): 

Vx(ln T(z)) = Vx(ln T(~))(1 + q~(z)) (67) 
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Then the spin and heat currents (25), (39), (65) can be written as 

j~(z) 
Vx(ln T(oo)) 

= - 2 G ~ ( 0 )  + G~(z) + ( 2 Q ~ ( 0 ) -  Q~(z))(#~ + Ts=) 

fo - dz'(o(z')EG~(Iz-z'l)-QT(Iz-z'l)(p~+Ts~)] 

(68) 
2 q~(z) 

Vx(ln T(oo)) 

= -2S~(0)  + S~(z) + (2V~(0) - V~(z))(#= + Ts~) 

f? - dz' ~o~(z')[S~(lz-z'l)- g~(Iz-z'l)(#~+ Ts~)] 

where q~ is negative and small. Now the total current j+ + j  goes to zero 
when z --, o% while the bulk diffusion current j + - j_  at z --, oo is finite and 
is equal to - p k r D V  In T, where kT is the (spin) thermal diffusion ratio. 
This means that 

I~ + Ts~ = G~(O)/Q~(O) -T- pkTD/4Q~(O) (69) 

and the total heat current, q = q + + q_, 

q(oo) = - x  VT (70) 

is non-zero. The coefficient of thermal conductivity in these notations is 
equal to 

r ~  = s ; ( o ) +  s [ ( o )  
Q](O) 

+e~(v;(ol v;(o)) 
\Q~(O) Q2(O)) 

By definition, 

vJ-(0) c;(0) v~-(0) G[(0) 
Q2(0)  

Tpcq3 Vx(ln T) = j + ( 0 )  + j 2  (0), 

fo T~23 Vx(1 n T) = dz [ j ~ ( z ) - j ~ - ( z ) ]  

Te33 Vx(ln T ) = I  ~~ dz [q+~(z)+q2(z)-q+x(OO)-q2(~)] 
~o 

(71) 

(72) 
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We should substitute these equations back into Eq. (68) and integrate over 
dz. After cumbersome transformations, similar to that in previous Sections, 
we get the following bounds: 

~13<0 

Ta23 < G+(0) - G3(0) - Q~-(0) Gf(O) ~- Qs G~(O) 
Qf(O) Q;(O) 

+~_D_  ( Q ; ( 0 ) .  \ Q - - ~  + ~ )  Q~-(O)~ 
(73) 

Tot33<S~_(O)+S;(O ) V~-(O) Gf(O) V;(O) G;(O) 
Q~(O) Q;(O) 

\Q;(O) Q;(O)J 

Additional bounds can also be obtained from the Onsager relations 
(Appendix A). 

It is worth mentioning that all "thermal" slip coefficients for Fermi 
systems at very low temperatures contain extra powers T/TF with respect 
to their "diffusion" or "viscous" counterparts, and are small. The reason is 
the same as for the usual bulk transport in Fermi liquids when the thermal 
conductivity (in dimensionless units) is small in comparison with viscosity. 

6. S U M M A R Y  

In summary, we calculated rather accurate upper and lower bounds 
for all nine slip coefficients (5). All the coefficients are proportional to the 
mean free path and, therefore, increase by the orders of magnitude at high 
spin polarization simultaneously with the mean free path. 

The data in Appendix B provides the information on slip coefficients 
at arbitrary degrees of quantum degeneracy and spin polarizations. The 
results are especially transparent in the limiting cases of high and low 
temperatures, i.e. in Boltzmann and degenerate regimes. Below we will 
summarize the results in a somewhat simplified form. 

As in Appendix B, we will assume that the matrix of relaxation times 
is diagonal. This is always true for dilute spin-polarized quantum gases in 
which the de Broglie wavelengths of particles are comparable to or larger 
than the radius of interaction. 2'9 What is more, we will assume that the 
(effective) masses of particles are the same for both components, m+ = m_ 
as for 3He in 3HeT-4He mixtures and dilute systems in general. 
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Even with this accuracy, the slip coefficients still remain complicated 
functions of polarization, ( N + -  N_ )/N, ratio of the relaxation times 
for spin-down and spin-up components, ~_/z+, and Fermi velocities, 
VF_/VF+ = (N_/N+)I/3. It is convenient to parametrize the results with the 
help of dimensionless variables 

v=N_/N+, t = r _ / r + ,  U=Vv_/VF+ (74) 

Unfortunately, the ratio r_/z+ is a known function of polarization 
only for quantum gases for which the de Broglie wavelength of particles is 
larger than the interaction radius, and the particle interaction reduces to 
the s-wave scattering. In degenerate gases under these conditions 9' n 

t - - -  = v 2/3 - -  ~+ -~ v C(2+)' V-N+ 

1 6 4/3 J._  =-~ ,  )~ + = l - -  2V2/3 %--~ V 

(75) 

where v = N _ / N +  characterizes polarization, (N+ - N  ) /N= ( 1 -  v)/ 
(1 + v), C(2) are Brooker-Sykes correction factors (the explicit expressions 
are given in Ref. 11). Though these factors themselves are very important, 
their ratio does not change much with polarization. 29 Therefore, in order 
to simplify the results, we will neglect these corrections; according to 
calculations, 29 the loss of accuracy will not exceed 8%. 

At higher temperatures, i.e. in the quantum region for spin-polarized 
Boltzmann gases, the ratio of relaxation times for spin-downs and spin-ups 
is different function of v = N_/N+,  

r_ 1 +4v 
t =- (76) 

~+ 4 + v  

For better illustration, we will supplement the general results by the 
results in the quantum region (75), (76). 

The strictest of inequalities of Sec. 3 provide the following bounds for 
the slip length ~ = ~n in the Boltzmann temperature range: 

f l  = l+vt2  > - - ~ 1 6 2  > ~ I  1 + vt 41+vt2q  
l+v t  (8T/Trm) '/2 -8 ~ v - - ~ + ~ - l ~ - ~ - J  =f2 

(77) 

The polarization dependence of the functions fl, 2 (77) in the quantum 
region (76) is given in Fig. 3a. 
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At low temperatures T<< T F the corresponding inequality obtains the 
form 

A _  
15 I + v t2u  3 ~11 

24 l+v tu  z Z+VF+ 

151+vt2u 3 4 I + vtu 2 
- - +  f4 >48 I + v t u  2 15 I+VU 

(78) 

The polarization dependence of the functions f3,4 (78) in the quantum 
region (75) is given in Fig. 3b. 

The off-diagonal slip coefficient ~21 is negative and has the following 
bounds at high temperatures: 

f5 =- v t (1 - t )  8~21 v ( 1 - t  2) f6 
- -  < < -  = ( 7 9 )  

1 + vt TN+z 2 1 + v 

Functions fs, 6 in the quantum region (76) are plotted in Fig. 4a. 
The corresponding bounds for the conjugate coefficient, ~12, are given 

by the Onsager relation: 

4 ~2~ z + ( l + v )  t ( ~ - v  1 - v t )  
O<al2 -TN+z+ l + v t  4 l + v t  +v 1+-~ 

In the low-temperature region, 

f 7 = - - ( l + v )  t ~  a+vtu 2 1+ 

50~21 1 1 + v t u  2 

< mN + za+ v2+ < 2 l + vu 
- -  ( 1 - v t u ) + ~ ( 1 - v t 2 u  2) 

- A  (80) 

while the Onsager relation becomes 

O<~12--mN+z+VZF+ l+v tu  2 l + v t  +v l+vtu2/  

In the s-wave scattering approximation (75) these two functions, fT, 8, are 
given in Fig. 4b. 
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The coefficient ~3~ has the following high-temperature bounds: 

25m~31 
f9 = --(1 +vt2)<  T2N + r2+ 

125 (l+v)2t(l_v)II-v 1-vt]  
< 1 3 7 ~ ~  l + v  l ~ v t J - = f m  (81) 

Functions fg, m in the quantum region are given in Fig. 5. The bounds for 
~3 can be found from the Onsager relation 

4 ~31+ 5Tr+ (1-vZ) t(1--t) 
O>~U-TN+z+ l+vt 172m ( 1 + $ ~  ~ 

At low temperatures T ~ 0  all the heat-related transport coefficients in 
Fermi systems contain extra powers of T/TF, and, therefore, are small and 
not very important. The same is true, as it has been mentioned in Sec. 5, 
for all slip coefficients eik which contain the index 3. 

polarization 
O~ -- ~ ~ 016 0,8 --~ 

-0 .2 -  

-0 .4-  

-0 .6-  

-0 .8-  

Fig. 5. Polarization dependence of the bounds fg, m, Eq. (81), for ~3~ in quan tum Boltzmann 
gases (76). 
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The second diagonal slip coefficient at high temperatures is restricted 

~22/-- -a~ (1 + t)---fll (82) 

while at low temperatures 

/3m 2 vt 
~ > 1--~vt (1 +tu)--f~2 (83) 

The polarization dependence of the functions f l l ,  12 for quantum gases 
(75), (76) is given in Fig. 6. The last diagonal coefficient is restricted at high 
temperatures by the inequality 

2~33 /'rcm \ l/2 m 9 
N+-c2+ ~ - ~  ) - ~ < a  (1 + vt2)-k 

15 t(1 - t ) ( 1  - g 2 )  
~fl3 (84) 172 1 + vt 

(see Fig. 7). At low temperatures this coefficient becomes vanishingly small. 
The corresponding off-diagonal slip coefficients in the Boltzmann tem- 
perature range are 

16o%3 (~m'~l/2 (~iTl~ 1/2 16~32 
N+v2+ \ 2 T J  \ 2 T J  TN+v2+ <f,4, f ls  

5 t ( l + t ) ( 1 - v : )  f~s=12 vt ( l - t )  
f14 = 1 - vt 2 q 43 1 + vt ' 

(85) 

In the case of quantum gases the functions f,4. 15 intersect (see Fig. 8). 
For the sake of comparison, we will add the expressions for the bulk 

transport coefficients. The diffusion coefficient has the form 

2 z + + v r  

( 0 / 1 ~ - '  N + v~ + r 
pD \ ~ c J  = 2m - ,  T<< TF 

7:+ + Wf 

k r p D  - 5TN+v + t(1 -- v 2) T>> T F 
172 1 + vt ' 
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while partial viscosities are given by the following equation: 

T 
q - q +  + q_ =-~ (N+z+ + N _ z  ), T>> T F 

m 
+ U F +  - -  _ q - ~ / + + q  =~- (N+z  2 + m  z V2F ), T<<TF 

The values of the slip coefficients in the intermediate temperature 
range are given by the results of numerical calculations in Appendix B. 

A P P E N D I X  A 

We will derive the Onsager relations for the slip coefficients in the way 
similar to the derivation of Waldmann symmetry relations in Ref. 28. As in 
Ref. 11, we will need the expression for the pressure diffusion coefficient 
with viscous renormalization. We mentioned in Sec. 2 that our definitions 
for diffusion currents is slightly different from that of Ref. 11; therefore, the 
expression for the pressure diffusion ratio is also different. 

We start from multiplying the transport equations for two (spin) 
components of the mixture, 

On_+ de+ On+ de_+ On-+ + 
Ot + ~ dr Or Op =I~~ (A.1) 

by m_+(v_+-u) and integrating over momenta (u is the overall mass 
velocity). After standard transformations, these two equations reduce to 
(see Eq. (10) of Ref. 11): 

N -+ O#+/Or - (~ +/~) OP/Or = -m-+ f (v_+ - u) I+u dF (A.2) 

The integrals in the r.h.s of Eqs. (A.2) are proportional to the mass 
currents, j +. Therefore, the bulk diffusion current (3) is proportional to 

J o - J + - J -  =cons t •  ( 0~t_____~+_ 0#_ ( q + - ~ / )  (A.3) 
N+ Or N 0r q ~rr 

The chemical potentials of the components, # +, should be expressed via #, 
Eq. (2), and the presuure P using the identity dP= N+ d#+ + N_ d# : 

J~ = c~ x + 2 ~ + 0 _  p+_ =-m+N+ 

(A.4) 
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This equation should be compared with the standard definition of diffusion 
current, 

(0e 
J D = -- D P Or + T Or P Or J (A.5) 

at constant temperature. The comparison leads to the following expression 
for the (spin) pressure diffusion ratio (cf. Eq. (12) of Ref. 11): 

k,e (~1~ -1 [(Olt) p ( p + - p _  r/+-q_)] (A.6) 

Now let us consider two large volumes of polarized gas connected by 
the tube of the radius R. The mass velocity of gas in the connecting tube 
is determined by the Poiseuille law (cf. Ref. 11): 

1 R2 2 2 dP dlt dT 
Ux(r) = -~-~ ( - r - RO~li)~x+~12~xx-[-(Xl3~x (A.7) 

where the pressure P, chemical potential #, and the temperature T depend 
only on the coordinate x along the tube. The total heat current through the 
tube is determined by the bulk heat flow (see Ref. 30) and the surface heat 
current (5): 

R V ~ 3 ~ d P  ~xx dT 1 Ia=2rCfo qbu,krdr+2rtRQS=2rcRL-~--~K--~x+Ot32 + ~33 ~x x 

dT+ 

\dTJe .  

where x is the thermal conductivity, ksr is the spin thermal diffusion ratio 
(A.5), and Jb is the bulk part of the total (spin) diffusion current through 
the tube 

F P ("+-P- 
\ p g 

(A.9) 
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The entropy production is given by 

_•  s,o,d. + f +lQdr  S= T [ ~ -~x l~ ' -~r  2~r dr + 2gR~lu~(R)--~--r T dx~ 

(A.10) 

where the stress tensor I-Ix, = ~/dux/dr. Now we have to substitute dux/dr 
in Eq. (A.10) by dP/dx with the help of Eq. (A.7): 

/ 7 IQdr  
S= T I, " ~ --~x Lrl A l-Ixrr2 dr +rtR ux'R) j +-T--~x J (A.11) 

If we choose 

dP d~ dT 
X l - d x  , X 2 - d x  , X3=~x  (A.12) 

as the thermodynamic forces for the entropy production, 

( ~ :  - - ~ X i X i  (A.13) 
i 

then the thermodynamic velocities are equal to 

rc zc 1 1 
2 1 = ~ f r 2 I - L ~ d r + ~ u ~ ( R )  R 2, 22=~1n,  23=-T~I Q (A.14) 

The thermodynamic velocities (A.14) are themselves the linear combina- 
tions of the thermodynamic forces, 

2 i = ~)ikXk (A.15) 

According to the Onsager principle, Y~k = Yk~- As a result, one immediately 
recovers Eq. (38), 

~21 = ~]~12 "~ ~C 2p+p_ p rl 

and the relation between e~3 and 73~: 

~32 = T~23 

k~r(O#/~?c)e,~ - T(~p/3T)e" ~ + # 
0~3l = r/T~13 (O#/Oc)e, T 

D P 2 ~ [  p + - p  "+ - - ~ / ~ - ]  (A.17) x 2p+p p rl 
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APPENDIX B 

We are interested in the values of the functions L.(z), K.(z), M.(z), 
Q.(z), V.(z), G.(z), S.(z), Eqs. (15), (27), (40), (46), and (66) at z = 0  at 
different temperatures and spin polarizations. These functions can be con- 
veniently parametrized in the following way: 

h 2 
fi + = p +_ ~. = T TF (3~2N) 2/3 

- T /  T /  =~m 

3 r~-l+.=_fi N, A +_, =(2rn+_)("+2)/2T~/2T("+3~/2 (B.1) 
C_+, - 16 m+ 

I[ dt e ~z/f 
I+ .  = ( - l n  t) (n+3)/2 (te~./~. + 1) 2 

where To is 
notations 

L •  = 

K + o ( 0 )  = 

M+.(0)  = 

Q+~(0) = 

v ~ n ( 0 )  = 

s •  = 

the degeneracy temperature of a non-polarized gas. In these 

n+ l n+ 3 C+_.A+.I+_. 

n + 2  m• 1I+~-1 

C+_~A lI+n n + 2  _+n+ _ +~ 
(B.2) 

n 1 n + l  m+~C+-'A+-~-2I• 

(, ) m+ 1 1 C+.A +.I+.,  G +.(01 = ~ V+.(0) 
n 1 n + l  m----+ . . . . .  

( n i l  nll)27+C+_.A+_.+21+_.+2 

1 
K f  (0) = -~ TN+_ z~ 

=~m+N+; Kf(O)= N+v+ 

Integrals I+ n with n = 1, 2, 3, 4, 5, which enter the expressions for the slip 
coefficients ark, are plotted in Figs. 9(a)-(f)  for several values of spin 
polarization. We will also give the analytic values of all functions in the 
limiting case of Boltzmann regime T >> TF, 
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