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This is the first in a series of papers on a consistent microscopic theory of 
transverse dynamics in spin-polarized or binary Fermi liquids. We start from 
exact microscopic equations in Green's functions at zero temperatures and 
consider slightly inhomogeneous perturbations. The transverse dynamics is 
described by an integral equation in a 4D momentum space with inevitable 
spatial and temporal non-localities. This equation can be reduced only to a set 
of two coupled equations for partial transverse densities corresponding to 
independent contributions to a transverse magnetic moment from transverse 
components of slightly tilted up and down spins. It is shown that, in contrast 
to previous phenomenological theories of polarized Fermi liquids, these 
equations reduce to a single Landau-like kinetic equation only in cases of low 
polarization or density. This implies the existence of two different sorts of 
(attenuating) transverse quasi-particles. The molecular field (an analog of a 
Landau function) has a form of a 4-component non-local operator. This 
interaction operator is expressed via the off-diagonal component of the exact 
irreducible vertex with the help of some integral equation, and cannot be given, 
as it is usually assumed, as any limit of the full vertex. The proper Landau-like 
phenomenological approach corresponding to our exact microscopic equations, 
should operate with two types of attenuating transverse quasi-particles each 
oscillating between its Fermi surface and some other 3D surface in a 4D 
momentum space. The dephasing of inhomogeneous precession between two 
different types of dressed transverse quasi.particles leads to an inhomogeneous 
broadening which manifests itself as a peculiar zero-temperature relaxation. 

1. INTRODUCTION 

Most of the interesting macroscopic quantum phenomena in spin- 
polarized quantum systems manifest themselves in spin dynamics (see 
review 1). In equilibrium, both the Hamiltonian and the density matrix can 
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be made diagonal in spins, and the particles are in pure spin-up and 
spin-down spin states. Near equilibrium, the spin dynamics can be separated 
in many cases into two major groups of  longitudinal and transverse pro- 
cesses. The longitudinal processes cover the changes in the component of  
a magnetic moment parallel to equilibrium magnetization and /o r  external 
magnetic field, while the particles remain in pure spin states. The transverse 
processes, like spin waves, cover the dynamics of  small transverse com- 
ponents of  magnetization and involve off-diagonal (mixed) spin states of  
particles. Such a separation is possible when the particles' interaction is an 
exchange one and does not depend on spins of  interacting particles, and 
when one is interested in states not very far from equilibrium. 

Longitudinal phenomena include such transport processes as diffusion 
of  longitudinal magnetization and longitudinal (dipole or spirt-lattice) spin 
relaxation. The basics of  longitudinal processes are quite clear (see, e.g., 
Ref. 1), though, of  course, the details might be not at all trivial. 

The situation with transverse spin dynamics is very different. Here it 
is often unclear even qualitatively what to expect in most general cases 
corresponding to dense highly polarized quantum systems especially at low 
(or zero) temperatures. What we know reduces to the following. 

The transverse spin dynamics in spin-polarized quantum (Fermi) sys- 
tems is dominated by a strong internal molecular field caused by a coherent 
part of  particles' interaction. The general symmetry arguments 2 ensure that 
the equations of  motion for transverse components of a macroscopic mag- 
netic moment take the form of  the Leggett equations 3 giving rise to a 
collective mode in the form of  the well-known Silin spin waves with a 
quadratic dispersion law. 4 One does not have any problems at low spin 
polarizations when one can apply the standard Landau theory of Fermi 
liquids, s Then all relevant macroscopic characteristics are expressed through 
the scattering cross-section for quasi-particles and the harmonics of  the 
usual Landau function describing the Fermi liquid interaction; the attentu- 
ation of  the Silin waves 4 remains negligible at low temperatures as far as 
the polarization is low. 

The problems arise at higher polarizations and are due to a not very 
clear character of  transverse quasi-particles, their attenuation, and to non- 
local effects (a brief  summary of  the problems with highly polarized Fermi 
liquids can be found, e.g., in Ref. 6). Here the main questions concern the 
possibility of  a consistent definition of  transverse quasi-particles, and the 
magnitude of  attenuation of  the Silin waves at low temperatures when all 
standard relaxation processes are negligible. These questions are closely 
related to a more fundamental problem of  the applicability and possible 
renormalizations for the Landau-Silin and Leggett-Rice theories for highly 
polarized Fermi liquids. 
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It has been known for some time, 7 that the transverse relaxation in spin 
dynamics of  spin-polarized quantum systems differs considerably from the 
longitudinal one. The main difference is an irrelevance of  standard conserva- 
tion laws in case of  transverse processes which may lead to a finite attenu- 
ation should not be a relaxation in a conventional sense, but rather an effective 
processes are already frozen. The origin of  such a zero-temperature attenu- 
ation should not be a relaxation in a conventional sense, but rather a effective 
dephasing of  oscillations in inhomogeneous situations resulting in some 
sort of  inhomogeneous broadening. The problem becomes even more com- 
plicated if one takes into account a non- local i ty  of  interaction which 
contributes to the attenuation because of complex off-shell derivatives of  
the vertex function. As we will see, the zero-temperature attenuation is 
always associated with off-shell contributions even without any non-local 
effects. This problem, in turn, makes it very important to choose properly 
a set of  dynamic variables for a Landau-like description of transverse 
phenomena,  and to take into account important temporal and spatial non- 
localities. 

The main goal of  this series of papers is to develop a general consistent 
microscopic and semi-microscopic description of  transverse phenomena in 
spin-polarized Fermi liquids. In the first paper we will derive the basic 
equations, and will try to get an insight into the physical nature of the 
zero-temperature attenuation in transverse dynamics. This will help us to 
formulate a generalized version of  a phenomenological Landau-type theory 
applicable for highly polarized Fermi liquids. As we will see, standard 
versions of the Landau theory do not provide even a proper form of  
phenomenological equations for transverse dynamics in dense highly polar- 
ized Fermi liquids. 

Simultaneously, we will get a concise understanding of  the zero- 
temperature transverse attenuation. Lately Jeon and Mullin 8 have confirmed 
that the zero-temperature attenuation 7 does exist for polarized Fermi gases. 
However, the calculations were restricted to very dilute systems where the 
dissipation is small anyway, and were based on a Boltzmann-like kinetic 
equation whose applicability is not very clear at low temperatures. As we 
will see below, the proper  kinetic equation has a different and a very 
unconventional form. Another concern is the use in Ref. 8 of the Born 
approximation for the Boltzmann equation: the straightforward application 
of  the perturbation expansion 9 to transverse dynamics often leads to some 
anomalous contributions which might be cancelled out 1° when the results 
are expressed--as they should be- - in  terms of the exact vertex part (the 
T-matrix), and not the matrix elements of the interaction potential, What 
is more, the calculations s for extremely dilute gases do not take into account, 
quite rightfully, the non-local contributions which are very important for 
denser systems. 6 We will show below that proper  transverse dynamics' 
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equations are highly non-local and reduce to a single kinetic equation in 
some "transverse density" only for vanishingly small densities of a Fermi 
system. 

The paper is organized as follows. In the next section we derive the 
exact microscopic equations (including the non-locality) at zero tem- 
perature. Then, in Sec. 3, we will reduce these equations to a Landau-like 
semi-microscopic form and express a generalized non-local Landau interac- 
tion operator via an exact irreducible vertex. This, in turn, will allow us to 
get an exact spin-wave spectrum including the zero-temperature attenuation, 
and to formulate an adequate phenomenological approach (See. 4). In Sec. 
4 we also discuss the shortcomings of  the standard equations of  the Landau 
theory for transverse spin dynamics and its possible generalizations. As we 
will see, the generalized equations should include time and spacial non- 
locality destroying a standard quasi-particle picture for transverse excita- 
tions. Instead, we arrive at a two-excitation description; the dephasing of  
inhomogeneous precession for these two types of  excitations provides a 
clear reason for the zero-temperature attenuation. The last section contains 
a brief discussion and a summary. The following two parts of  thisseries  
will contain the applications of  the general results to dilute Fermi systems 
(Part II) and polarization/field expansions (Part I l l) .  

2. EXACT MICROSCOPIC EQUATIONS FOR TRANSVERSE 
SPIN DYNAMICS 

In principle, what we would like to have is a generalized version of  
the Landau theory of  Fermi liquids covering transverse phenomena and 
including retardation and spatial non-locality. In contrast to longitudinal 
phenomena for which such a generalization is rather straightforward (see, 
e.g., Refs. 1, 2, 11-17 and references therein), it is not obvious at all that 
one can develop a Landau-type theory for transverse processes correspond- 
ing to the dynamics of  mixed spin states of  the Landau quasi-particles. The 
difficulty here is associated with the mere principle of  long-lived quas i -  
particles: it seems impossible to introduce off-diagonal (in spin space) 
single-particle states without a strong attenuation (see, e.g., Ref. 6). There- 
fore, we base our description on exact equations for real particles rather 
than try to introduce some quasi-particles. Only in the very end we will 
learn how and to what extent one can revitalize the Landau-like quasi- 
particle picture. 

In this paper  we deal with systems at zero temperature. On one hand 
it allows us to obtain the exact and easily understandable results, and on 
the other makes all the calculations easier. The generalization to higher 
temperatures will be given elsewhere. 
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At zero temperature we can start from the standard Dyson equation 
rather than from Keldysh or Kadanoff-Baym diagrammatic techniques for 
advanced and retarded functions: 

G12= ~(o) (o) (1) ~,..i 12 "q- G 1 4  ~.43G32, 

~_(o)+ ~ v ~(o) (2) 
G 1 2  = ~.--J 12 ~.J 14~-~43 ~.J32,  

and we will need both of these seemingly equivalent equations. Here G 
and G C°) are the Green's functions for interacting (dressed) and non- 
interacting (bare) fermions, and E is the self-energy part. Each of the indices 
represents a complete set of variables for a particle including the coordinates 
(or momenta), frequencies, energies, spin states, etc. 

Applying the operators (~o),~ to the first and G(2 °)*-~ to the second of 
the equations (1), and subtracting the results from each other, we get: 

(G(2 °)*-' - G~°)-I)G,2 = -~13G32 + G13~32 (3) 

where 

~(o)-~_.  0 , Vl 2 ' 

~(o) and the same for ,-,2 • 
In order to examine the transverse spin dynamics, we make a small 

variation of G and a related variation in E: 

G ' = G + S G ,  E ' = E + 6 E  

The corresponding variation of Eq. (3) should be calculated using the 
identity expressing small variations of the mass operator through the irreduc- 
ible vertex function in the particle-hole channel ~lS (see Appendix A): 

6 ~12 = - iF1r,22,6Gv2, (4) 

As a result, the linearized variation of Eq. (3) takes the form 

( G ( U  _ GIo -')SG12 

= -~13t~G32 + t~GI3~'.32 + iF l l , ,33 ,~G3,1 ,G32 - iGI3F33, ,22 ,~G2,  3, (5) 

All functions, G, E, and F, are 2 x 2 or (F) 4 x 4 matrices in spin space. The 
diagonal components of G and E correspond to pure spin-up (1') and 
spin-down (~) states. Only these components enter the unperturbed (equili- 
brium) values of G and E in Eq. (5), while the perturbation 8 G  is allowed 
to have all four spin components. The spin matrix of the vertex part [~ 
corresponds to the spin-conserving exchange interaction; as a result, F~.v~ 
(all spin indices have the values 1' or J,) has only the components for which 
the numbers of 1' (and ~) before and after the comma are equal to each other. 
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We are interested in transverse phenomena which are described by the 
off-diagonal components of  Eq. (5), i.e. the equation in 8G,~.  We will use 
the mixed representation 

8Gt~(po,  p; t, r) = g(Po,  P) exp(- i tot  + ikr), (6) 

in which the off-diagonal component of  Eq. (5) reduces to an integral 
equation 

(7) 

where Po and p are the temporal (frequency) and spatial components of the 
4-vector P, and to and k are the components of  the 4-vector K, while 
8to = to - rio, rio = 2 f i l l  is the Larmor frequency for bare fermions,/3 is the 
magnetic moment of  the fermions, H is the external magnetic field (here 
and below we assume h = 1). 

We will consider relatively smooth inhomogeneities corresponding to 
small k. On one hand, only this case conforms with standard experimental 
setups, and, on the other, allows a reasonable comparison with a Landau-like 
approach and macroscopic Leggett equations. The smallness of  k will also 
mean that &o should be small. However, this does not mean that the 
frequency to itself is small: the Larmor frequency llo and, therefore, the 
frequency to remain arbitrary. What is more, the smallness of  8o9 does not 
even mean that we are considering a "hydrodynamic"  regime 8toT± << 1: our 
results are applicable in a collisionless Silin regime 8to~'z >> 1 as well (see 
Ref. 1; ~'l is the transverse relaxation time). 

Another very important feature of  Eq. (7) is that it contains the Green's 
functions and mass operators only for pure spin states, and does not demand 
any preliminary information on the properties of  the mixed states. 

Note, that Eq. (7) is similar to the equation for the pole of  the mixed 
component of  the two-particle Green's function (see Ref. 19). 

The eigennumbers of  the integral equation (7) in g ( P )  will give us the 
spectrum of  spin waves (Silin type waves) 8to(k)cck 2. In case of low 
polarizations, the Fermi momenta for spin-up and spin-down particles are 
close to each other, pc ~p~ ~ p~, the singular part of the difference Get(p) - 
G~(p) is proportional to B(p--pF),  and the spectrum is real and reduces 
to the well-known Silin-Leggett equations 3'4 (see See. 3 and the third paper 
of  this series for more details). 

In case of  a homogeneous spin precession, k = 0, the interaction should 
not renormalize the Larmor frequency, 8to = 0, to = ll0. This can be proved, 
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as it is usually done in similar situations in the standard theory of  Fermi 
liquids, 2° with the help of  small rotation of the magnetic field or the 
polarization axis. As a result, we get two very convenient expressions: 

x~(po + 13/-/, P)-Xt~(Po-~H, P) 
I d4p, 

=i F,~,~t(213H; P,P')[G~(p'o+flH, p ' ) -Gt~(p~-f lH,  p')] (21r)4 (8) 

and 

(E~s(Po +/3H, p) - E, t (Po-/3/4,  P))go(P) 

= i f Fr~.~r(EflH, 0; P, P')  
d 

x [ G~(po+  fill, p) - G~t(po-fill, P)]go(P') - -  
d4p , 
(27r)4 (9) 

The equation (9) is valid if 

12o f~o 
go(P)=cons tx[Gj .~(po+--~ ,p ) -G~(po- - -~ ,p )]  (10) 

and is, basically, an equivalent of  Eq. (7). 
We are interested in the case of  small, but non-zero, inhomogeneities 

described by the lowest orders in the vector k. Then we can write the 
expansion for the function g(P) as 

g(Po, P) = go(Po, P) + g~(Po, p)pk 

+gE(Po,p)(pk)2+g3(Po,p)p2k2+ . . .  (11) 

while the frequency contains only the even powers of  k: 

to = ~-~oq- otk2+ • • • (12) 

In this paper we are interested in the main term in the spin wave spectrum 
ot = or' + ia". On one hand, this coefficient contains all important information 
on the waves propagation (or') and the zero-temperature attenuation (a").  
On the other hand, this accuracy is necessary and sufficient to recover the 
equations of  spin dynamics in both hydrodynamic Leggett and high- 
frequency Silin limits (the iterrelations between hydrodynamic and collision 
limits for this type of problem with large internal molecular field frequencies 
are discussed in some detail in review). 1 Therefore we can truncate the 
expansion (11) immediately after the terms with k 2. 

The value of  a can be determined by substituting expansion (11) up 
to the terms k 2 into Eq. (7). In doing so, it is convenient to introduce the 
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arguments for the irreducible vertex part Ft~.,~(K; P, P') in such a way as 
to ensure the zero value of the derivative 0Ft~.~¢(K; P,P')/~k=O (see 
Appendix B). As usual in such problems, it is sufficient to restrict oneself 
only to the first two terms in the expansion for g(P), g ( P ) =  
go(Po, P) + gl(Po, p)pk: if one wants to get the eigenvalues of  a non-degen- 
erate operator in the second order, it is sufficient to know the eigenfunctions 
just in the first order. 

Note, that the k2-terms enter the equations not only because of an 
explicit dependence on k in the bracket in the 1.h.s. of Eq. (7) and the 
presence of  k in the spatial components of the 4-vector K, but also because 
of  the presence of  the frequency &o oc k 2 in the temporal component of the 
4-vector K = (12o/2 + &o, k) in the arguments of the Green's functions, mass 
operators and the vertex in Eq. (7). This leads to a presence of a denominator 
S in the following expression for the coefficient a:  

_ , / / K o \  

where 

s= f 

kikj go( P ' )d4pd4p ' /  (2"n') 4 (13) 
× k--- T 

d4P'l} 

the denominator S itself is equal to the integral 

+, I 
- G t t ( P ' - ~ ) )  +~'(Ko; P,P')(GIj, po(P'+~) (14) 

, . o  
+ o...o(. JL \ 
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while the 4-vector Ko = (1-1o, 0), rio = 2OH, arrows stand for spin.up and 
spin-down states, 

0E 02X 
O~'P Op ' ~'PiPs = OpiOpj 

OG 02G 02[. (15) 

Op~Opj ' ' Ok~Okj 
and the main term in expansion (11), go(P), is given by Eq. (10). 

We still have to express gl in Eq. (13) through go (10) with the help 
of Eq. (7) which leads us to the integral equation 

X~ p_Ko p'k 

(2~r) 4 

<,4., 
+ G . p  P -  go(e') (2~-)' (16/ 

The set of Eqs. (13)-(16) determines the spectrum of collective trans- 
verse excitations including their zero-temperature attenuation. It is possible 
to simplify Eq. (13) using relations (8), (9), and, after some algebra, to 
reduce the expression for a to 

=--~ [--ff I ~ [.'i,*ik, kj(Ko; P, P')( Gii( P +~-~) 

( -G** P ' .  ( 2 ~ ) ~ + i  (2~r)4 k~g~(P ) 

'< [~+ ~ ('<,,,(" +~) +'<,,,(" - ~) 
'I ( ( ~ )  -~ [.**,**(Ko; P', P) G**p, P'+ 

d*P' 1 
+ G't'rj,,(P'- ~ '~) ) ]  (2,rr)4j (17) 
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where the 4-vector K0 = (ll0, 0) contains only the Larmor frequency rio = 
2/~H. 

Of course, these equations cannot be solved exactly for a Fermi liquid 
of  a general type for which we know neither the kernel of  the integral 
equations (16)-(17) (the vertex part), nor the exact expressions for the mass 
operators ~ ,  ~t~ and Green's functions G~ ,  Gtt .  However, even at this 
stage we can already indicate the sources of  imaginary contributions to the 
spin-wave spectrum a (17). Basically, there are two major sources for a": 
the imaginary terms in the vertex F and its derivatives, and large imaginary 
terms in the mass operators Ett ,  E~ and the Green's functions Gtt ,  Gs~ at 
frequencies far away from the Fermi energies. The former terms contribute 
to the zero-temperature attenuation mostly due to a non-locality of  the 
interaction and to imaginary contributions to the scattering amplitude in 
off-shell directions. The latter terms lead to the attenuation because single- 
particle states in Fermi liquids (quasi-particles) do not attenuate only very 
close to the Fermi surface. At high polarizations (i.e. if the difference in 
Fermi momenta for up and down spins Pt-P~ is large) the differences 
Y'tt - E~ and Gtt - G~ are non-zero everywhere between the Fermi surfaces. 
Thus these differences involve states which are far away from the corres- 
ponding Fermi surfaces, and, therefore, have large imaginary parts. Since 
these two sources of the zero-temperature attenuation have a somewhat 
different nature, the corresponding contributions manifest themselves under 
different circumstances. Later on, we will evaluate the zero-temperature 
attenuation of  spin waves in different types of polarized Fermi liquids. 

3. G E N E R A L I Z E D  T H E O R Y  OF FERMI L I Q U I D S  FOR 
TRANSVERSE P H E N O M E N A  AT H I G H  POLARIZATIONS 

In principle, the above results are sufficient to determine the transverse 
spectrum and the zero-temperature relaxation in different systems. However, 
it is desirable to put the same equations into the context of  a generalized 
Landau theory of  Fermi liquids. On one hand, it will allow an easy com- 
parison with the well-known Silin and Leggett-Rice results at low polariz- 
ations and will ensure a good reference point. And, on the other hand, we 
will be able to understand all the shortcomings of  the standard Landau 
theory with respect to transverse phenomena at high polarizations. What is 
more, as an important by-product, we will eliminate the singularities in the 
above integral equations. In doing so, we will see that the standard quasi- 
particle description fails and becomes absolutely unapplicable. The whole 
macroscopic picture should be changed starting from the main assumptions. 
The main change concerns the incorporation of  different temporal and 
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spatial non-localities as a result of which the equations in Green's functions 
resist the attempts to rewrite them as a single kinetic (transport) equation 
for an off-diagonal (mixed in spins) component of some single-particle 
(quasi-particle) distribution. The only thing one can do is to reduce these 
equations in Green's functions to a set of two coupled equations in some 
attenuating partial "transverse densities". As a result, the transverse Landau 
interaction assumes a form of a peculiar 4-component matrix operator. 
Needless to say, this major change occurs only for transverse dynamics of 
highly polarized systems; the equations of longitudinal dynamics can still 
be written in the form of a slightly modified Landau kinetic equation for 
semi-classical distribution functions of up and down spins. 

From the technical standpoint, we will deal with and benefit from the 
singularities in the kernels of the above integral equations. To the best of 
our knowledge, these singularities were not approached consistently despite 
numerous previous attempts to develop a microscopic theory of transverse 
phenomena (some of the recent results are described in Ref. 16). 

The success of the Landau theory is based on the exploitation of the 
singularity in the particle-hole channel with a small momentum transfer 
which corresponds to the singular part of the product of the Green's 
functions G~(P + K/2)Gtt(P-K/2). The main single assumption of this 
paper is that the Green's functions for particles in pure spin states have a 
(single) singularity (a pole) on their respective Fermi surfaces; we do not 
make any assumptions about analytical properties of mixed states. Of course, 
such an assumption reduces the applicability of results only to conventional 
normal Fermi liquids, and leaves aside more exotic systems like marginal 
Fermi liquids. 2~ In case of transverse dynamics, this singularity is crucial 
for the integrand in Eq. (7) since, by definition, 

Pm f) .8, 
The product of the Green's functions (18) can be split into a singular and 
regular parts ~br and ~bs, which may be written in the form 

= iq~r(P+f, P-I~)-t&o _ _ ~ _ ~ ( p + f ) +  ~ t t ( p _  K ) (19) 
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The singular part originates from poles of the Green's functions for spin-up 
and spin-down particles, and is due to the pinching of the contour of 
integration over Po between those poles of G**(P + K/2) and Gt~(P- K/2) 
which are located on the opposite sides of the line Im Po = 0. If we are 
interested in the residue of the integrand in the pole corresponding to one 
of these Green's functions, the denominator of the other will be exactly 
equal to the term in the square brackets in Eq. (18) and will cancel it: 

K K pk K 

Now one has to substitute Eqs. (18)-(20) into the integral equation 
(7), and to regroup regular and singular terms. After some algebra (see 
Appendix C), this equation reduces to the integral equation with a regular 
kernel, 

pk K 

f , [ , K , K \ .  , d4P ' = ~(K; P, P ) ~ P  +7' P -~)g(P)  (2~)  4 (21) 

where we have used the notation 

and have introduced the regular function ~(K;  P, P') in ther kernel with 
the help of the integral equation 

~(K;  P, P')-- P**,s~(K; P, P ' )+ f  P~,,**(K; P, Q) 

d4Q 
x 4~r(Q+ K/E, Q - K/2I~(K;  Q, e') ~ (23/ 

The r.h.s, of Eq. (22) contains explicitly the difference of two Green's 
functions. As a result, the function ~(P) is not singular, while g(P) is 
proportional to the same difference, and, of course, contains a singularity. 

The function ~(K;  P, P') (23) will be used to generate--though in a 
non-trivial way--the generalized Landau interaction for transverse 
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phenomena in polarized Fermi liquids. It serves for highly polarized systems 
as an analog of the antisymmetric (in spins) part Fa of the Landau function 
F °' which is usually defined for non-polarized systems as the following limit 
of a full vertexS'18"22: 

2¢r 2 
Z2pvm , Fa(PF, p~) ---- Ft~,,t(pF , P~) 

t ¢ = lim lira Ft+ +t(to, k; 0, pv ; 0, PF) (24) 
to->O K ~ O  

However, it is possible to give a different, but a completely equivalent 
definition for F °' (see Refs. 18, 22 and Appendix C): 

rt~,+t(P, P ' )  = ~,+~(/ , ,  P ')  

(zcr) 

or, in the operator form, 

r t~,+, = (1 - ~**,,, ~r )-  1Ft+,+, (26) 

For longitudinal processes the equivalence of equations analogous to (24) 
and (25) holds even for highly polarized systems. It is not so for transverse 
processes, though some unsuccessful attempts to introduce the Landau 
interaction function as a limit of the full vertex part are also made from 
time to time for highly polarized Fermi liquids (e.g. Ref. 16 and references 
therein). 

At high polarizations, and this is a very important point, the Landau 
interaction function for transverse phenomena cannot be introduced as 
some limit of a full vertex by modifying Eq. (24). The reason is the 
inevitability and unsuppressability of the singularity ~b~ in the full vertex F 
in polarized systems. In non-polarized systems, this singularity can be 
marginally suppressed in the limit k--> 0. In this limit both Fermi spheres, 
as well as the poles of the Green's functions, merge. This eliminates the 
singularity which is proportional to the volume in the p-space in which the 
poles of the Green's functions for spin-ups and spin-downs are on the 
different sides of the contour of integration over Po (see Appendix D), In 
polarized Fermi liquids, the radii of the Fermi spheres for spin-ups and 
spin-downs are different, and the poles of the Green's functions for spin-ups 
and spin-downs cannot merge completely, remaining on the different sides 
of the integration contour within the finite volume in the p-space. Therefore, 
any limit of the full vertex function Ft~,+t(K; P, P') contains the above 
singularity, while the irreducible vertex function Ft+,+t(K; P, P'), and, con- 
sequently, the generalized Landau interaction ~(K;  P, P'), defined by Eq. 
(23), do not, and are regular. 



794 A.E. Meyerovich and K. A. Musaelian 

Note, that the formal operator equation (26) remains valid at all 
polarizations. In essence, our integral equation (23) is a generalization of 
Eq. (25) for high polarizations, and includes the non-locality (finite 8w and 
k) which is very important, as we will see later, at high polarizations. 

So far, the functions 6s and q~, have not been uniquely and explicitly 
defined. Of course, there is always some ambiguity in separating singular 
and regular parts of the product of the Green's functions. Such a separation 
is based on the fact that the Green's function G(po, p) should have a pole 
at Po = e(p) and, therefore can be presented as 

= zr,~(Po, p) 
Gtt '~(P)  Po-  et.~(P) +/~ + i0 sign po + G~.~(P) (27) 

where Zt4(P) and G~4(P) are some regular functions. These functions are 
not defined uniquely--certain changes in the numerator Z (proportional 
to the denominator) can be compensated by corresponding changes in G r 
In order to fix the definition of Zt,~(P) we will define it exactly as a residue 
of  the Green's function in the pole Po = et.~(P) -/~, namely as a function 
Zt.~(p) = Zt4(p o = et4(p ) - /z ,  p) introduced as 

Zt4(p) = res Gtt,,,(po, p) 

which is equivalent to 

z,~l(p) = 0O~'..(p0 = n , , ( P ) - ~ . ,  p) (28) 
opo 

According to the definition of the mass operator, 

Gtt4+(P) = [Po -P2/2m ~: BH - Ett4+(P) - /~  + i0 sign po] -a, 

Eq. (28) can be rewritten as 

1 aX~t,~(po = et,,(p) - ~, p) l (29) 
z~.~(p) Opo 

In the absence of  the field/polarization, one usually encounters only the 
constant Z = Z(pv) (eft Eq. (24)). Now we can define the function 6~ (19), 
(20) (and, therefore, 6r) as an unambiguous combination of 3- and 0- 
functions (see Appendix E): 

++f, 

+.)] 
(30) 
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Not surprisingly, the dependence of q~s on Po is fairly simple and reduces 
to two ~-functions. However, as a result of a temporal non-locality, both 
~-functions are centered at high polarizations, around two separate points 
with increasing distance between them with growing polarizations. As we 
will see shortly, the presence of these two separate 8-functions in Eq. (30) 
causes major complications and changes with respect to non-polarized or 
weakly polarized systems. 

Eqs. (21), (23) and (30) form a complete set of equations necessary to 
describe the transverse dynamics. Since all the kernels of integral equations 
are now regular and unambiguously defined, the description is complete 
and well-defined. 

In case of low polarizations one can simplify considerably the set of 
analogous equations by rewriting it as much simpler equations in quasi- 
particle (spin) densities thus reducing the dimensionality of all integral 
equations from 4-vectors P to usual 3D momenta p. It is highly desirable 
to do something like that at arbitrary polarizations. Now we have two 
different ~-functions (30) containing P0 which should be substituted into 
Eq. (21). These 8-functions trivialize integration over p~ and reduce Eq. 
(21) to 

( &o-P--km -~,~(P+ K/2)+ ~,r¢(P- K/2))~(P) 

=12 f [~ (K ;  P, PI)Z~(p'+k)~,(P'~)+~(K; P,P'~)Z,(p'-k)~(P~)] 

x [0~(p')-O,(p')]  a3p' 
(2,rr) 3 (31) 

where 

K=(Sw, k), P~--(e,L(p+ k)  &o H \ -/z---~-13 ,p), 
~w 

01,(p) = 0(e•(p - k )  - . ) .  (32) 

Generally, we are not interested in the eigenfunction ~(P) at arbitrary values 
of P. We want to know only its values on the 3D surfaces P = P~,~ in the 
4D space of momenta P. Therefore, we need to find only two functions 
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gt(P) -- g(Pt) and ~(p)  -- ~(P~) in a 3D p-space for which we can introduce 
the "transverse densities" 8nt(p) and 8n~(p) as 

8ns(p) = ff~(p) -= ~(P~), 
(33) 

8nt(P) = ¢?(P) --= ¢(Pt)" 

Then Eq. (31) reduces to a set of two coupled equations in transverse 
densities: 

WsfK; p)Bn~fp) = ~ I [F~fK;  p, p')Sn,fp') + F~¢(K; p, p')Sntfp') ] 

0 " "" d3p' 
X (O,(p')-- ~tP )) (2~r)3 

Wt(K; p)Sn,(p) = 1 f [Fr*(K; p' p')Sn~(p')+ Ft,(K; p, p')Snt(p')] 

d3p ' 
x (0,(p') - 0,(p')) (2¢r)3 (34) 

with the following functions W: 

W~( K; P) = [ &o-P~km -£,~( P, +~K) + £~t( P~-~K) ]z,(P+k), 
(35) 

K Z k W'(K'P)=[&°-Pk-£J'*(P*+K~+£t¢(P'-2)]' m \ "  2] ' ( P - 2 ) '  

and the 2 x 2  interaction operator (matrix) F (K;  p, p') which plays the role 
of the set of four generalized non-local Landau functions: 

=Z ,  p + k z ~  p ,+k  (g(K; Pi), 

Z k Z , k 

(36) 

F~,,(K; p, p') =Z,;(p-k)zi(p'+k)g(K; P'~, P',), 

k Z , k  F,t(K; p, p') = Z,(p-~) ,(p -~)~(K; P,, P~) 

Note, that the above functions Bnt(p) and 8n,(p) are not distribution 
functions of spin-up and spin-down quasi-particles. The functions 8nt(p) 
and 8n~(p) are rather partial contributions to a mixed spin component of 
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quasi-particles' density matrix from slightly tilted spin-ups and spin-downs 
(see below). Probably, a more appropriate, but much more cumbersome, 
notation should be 8n¢(p) = 8n~)(p) and 8n,(p) = 8n~)(p). 

The zeroth components of 4-vectors P¢,, (32) are complex since the 
single particle spectra e~.~(p) are complex functions of p with real values 
only on the corresponding Fermi surfaces. As a result, the above functions 
W and F, i.e. the coefficients in Eqs. (34) are complex except for the limits 
of vanishing polarizations, when the functions are taken only on the Fermi 
surfaces, or of vanishing densities, when the single-particle spectra are real 
everywhere. This explains, essentially, the presence of an imaginary part in 
a and the existence of a considerable zero-temperature attenuation (trans- 
verse relaxation r~_) at high polarizations/densities. 

The split of the general equation into a set of two coupled equations 
in two densities 8n~,t(p) is quite natural. The polarized system consists of 
two subsystems with spins up and down. When we slightly tilt the magnetiz- 
ation, particles with spins up and down start to precess around the quantiz- 
ation axis. In homogeneous case, when the distributions are still the equili- 
brium ones (in a rotating frame), the precession frequencies are the same 
for both species with different spin projections and are equal to the bare 
Larmor frequency. However, if one introduces some deviation from equili- 
brium distributions, 8n~,t(p) , the precession frequencies become different 
because of the obvious asymmetry in the mean field Landau interaction 
with respect to spin projections. As a result, the equation splits into a system 
of two coupled equations (34). This spin-up-spin-down asymmetry is some- 
what analogous to a usual particle-hole asymmetry for deressed particles, 
and is proportional to the degree of polarization. It disappears in cases of 
either weak polarizations or very dilute systems when the effective mean 
field interaction is constant. In both of these limiting cases the equations 
(34) merge into one equation (this will be disussed in more detail in Parts 
II and III of this series). 

It is worth transforming Eqs. (34)-(36) in order to highlight this analogy 
with a two-component mixture of pure spin states. Later, this will also help 
us to establish a link with a possible phenomenological Landau-like descrip- 
tion. By definition, the energy spectra of spin-up and spin-down particles, 
e~(p) and e~(p), are determined as the solutions of the following equations: 

2 

e~(p) = 2 ~ +  ~T~(et(p) -/x, p) -/3H, 

(37) 
. _ 2  

e~(p) = ~m + ~(e j . (p )  "/x, p) +/~H 

We can also introduce spectra of some pseudo-particles' states defining 
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them by equations similar to Eqs. (37): 

p2 
et (P) = ~mm +Et t  (e~ (p + k) - p - &o - 2fiB, p) - flU, 

p2 
&(p) = ~ + ~,4,(e (p - k )  - IX + 6to + 2 f i l l .  p) + / 3 H  

(38) 

One gets into a pseudo-state with spin up, gt(P) ~ et(P), by simply flipping 
the spin of a particle with spin down and nearly the same momentum (k 
is small), and shifting its energy by the bare Larmor frequency plus small 
&o. Analogously, one gets the spin-down pseudo-states, g,(p)#  e,(p), by 
flipping the spin of a spin-up particle with a corresponding momentum and 
energy shifts. Such operations do not end up with real Fermi surface states 
because the difference between the Fermi energies of spin-ups and spin- 
downs (which is, essentially, the zero-temperature susceptibility of a highly 
polarized Fermi liquid), 

e,(p) - et(p) = 2ill(p, H)H, (39) 

is very different for dressed particles from the bare Larmor frequency 2fill. 
Eq. (39) may be considered as a definition of the function 131(p, H). 

With the help of Eq. (39), Eqs. (38) can be rewritten as 

p2 
~t(P) = ~m + ~tt(et(P +k)  - ~  - 6o., + 2(ill(p+ k) - f l ) H ,  p) -~H, 

p2 
g~(p) = ~ + ~$s(e~(p- k) - / ~  + &o - 2(/31(p - k) - f l )H,  p) + f lH  

(40) 

Since we are interested only in smooth inhomogeneities with small k and, 
therefore, small &occ k 2, the small shifts of the arguments of the mass 
operators by &o and k in the r.h.s, of Eq. (40) are not crucial. What really 
makes the pseudo-energies (40) different from the energies (37) is the term 
2( /~ l (p) - f l )H in the arguments of the mass operators. This term is small 
either at low polarizations (small H), or at low densities (13~ is close to fl). 
Only in these cases the pseudo-energies (40) are close to real energies (37); 
then the differences ~(p)  - e~(p) and ~t(P) - et(P) are negligible, andpseudo- 
particles coincide with usual (quasi-)particles. What is more, in the main 
approximations for these limiting cases, the functions W t and W, become 
equal to each other, the matrix F degenerates, and the doubling of equations 
disappears reducing the system (34) to a single kinetic equation. We will 
discuss this in more detail in Parts II and III of this series. 
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As for a general case, Eqs. (35) can be written in a manner vaguely 
resembling the corresponding Silin equations: 

. k k Ws(K;P)=[&°+213H-e*(p+k)+e?(P-~)]Z*(P+~), 
(41) 

. k k k W'~( K ; P) = [ &° + 2~H- e~(P+-~) + e~(P-~) ]Zt(P-~), 

We want to emphasize here that the link between ~ns,?(p) and densities 
of real particles with up and down spins or corresponding Landau quasi- 
particles is not trivial. This question, together with the closely related 
problem of macroscopic equations of motion, will be studied in detail 
elsewhere. One may consider the densities 8ni,,~(p ) as partial contributions 
from the mixed spin components of slightly tilted spin-up and spin-down 
Landau quasi-particles to the overall off-diagonal (mixed) component of a 
single-particle density matrix, i.e. as partial contributions from up and down 
spins to the distribution of the transverse component m+(p) of magnetization 
m(p). Symbolically, it may be written as 8n~(p) = 8n~)(p), 8n~(p) = 6n~)(p). 
However, one should keep in mind that the states Bn~.~(p) correspond to 
complex energies and are short-lived having a large attenuation at high 
polarizations/densities. Therefore, the partial transverse densities 8nil(p) 
might also be considered not as some real quasi-particles' densities, but as 
some auxiliary quantities appearing on intermediate stages of microscopic 
calculations. 

We also want to give here the relation between 8n~,,(p) and the off- 
diagonal element ~N+r(p) of the single-particle density matrix )V(p) for real 
particles 

f dpo 8N,~(p) = -i 8Go-(po, p) 2~r' (42) 

which assumes the form 

Pkm ~ * * ( P + f i + E ? t ( P - ~ )  

x ( f  [~(K;P,P'~)Sn~(p') 

d 3 , 
+ ~(K; P, P'~)~n?(p')][O~(p')- Ot(p')] ~ / d p o  

~LTr) j 
(43) 
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If  one would like to introduce quasi-paticles in a straightforward way, one 
would have to write an analogous equation but for an ideal gas of quasi- 
particles. In case of an ideal gas, the regular part ~b, of  the difference of 
two Green's functions (20) is identically equal to zero, and the only remain- 
ing singular part ~b~ contains 8-functions (30) allowing trivial integration 
over dpo in Eq. (43): 

8t~'t't(P) = I[Oj'(P)- O't(P)] I ~'[ Z~(p) F~,~(p, p') t LZ~  W~(p) 
F Zt(p) +~(p, p)l , 

+z~(p') W+(p) ]Sn~(p) 
[Z~(p) F~t(p,p')+Z+(,p) Frt(p,p')l~ ,.,,l 

+ tZ r (p ' )  W~(p) Zt(p') w~(p)j,,n~,F,j 
x [0~(p') - 0t(p')]} 

d3p ' 
(27r)3 (44) 

Now it is time to determine the spin-wave spectrum from Eqs. (34). 
We can do it by expanding Eqs. (34) in k. This procedure is equivalent to 
a gradient expansion for the equations of motion. For exactly the same 
reasons as in Sec. 2, it is sufficient to leave only the first two terms in the 
expansion of the transverse densities in k: 

~n~,Q'(p) = ~n~O~(p) "]- (1) , pkSn~,+(p) (45)  

and to disregard the term n~2,~(p). According to Eqs. (10), (22) and (33), 

8n~°)(p) = A, 8n~°)(p) = A (46) 

where A is an irrelevant constant (generically the same as in Eq. (10)) 
characterizing the amplitude of perturbations in homogeneous equations; 
below we assume A = 1. 

Equation for Snail(p) is obtained by substituting Eqs. (45), (46) into 
Eq. (34) and extracting the linear in k term from this equation: 

W~(Ko; p)Sn~)(p)-I I '~k [F~(Ko; p,p')Sn~)(p') 

d3p ' 
+ F~(Ko; p, p')~Sn~t)(p')][ 0(e~(p ') - / z ) -  0(e t (p ' ) - /~)]  (2,/7.) 3 

- - -  w  (ICo; p ) + l ]  p, p')+ p, p')l 

x [#(e,(p') - /x)  - #(ei.(p' ) -/.~)] + ½[Fs~(Ko ; p, p') + Fj.t (Ko; p, p')] 
dSp ' 

x [8(et(p') - $t)~,s(p') + 8(er(p') -/z)v~(p')]} (27r)3, (47) 
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where we used the following notations: 

A 

and the same for other components of the matrix F. The presence of the 
0-functions in the integrands in Eqs. (47) makes these equations very difficult 
to solve analytically in a general case; the terms with 8-functions are much 
simpler since they effectively eliminate the momentum integration and 
reduce the corresponding part of the equation to an angular problem on 
the Fermi surfaces. The formal exact solution of Eqs. (47) at arbitrary 
polarizations will be given in Part III. 

Expanding Eqs. (34) to the next order in k and integrating it over p, 
we obtain the following expression for a: 
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+ F~k(Ko; P, p,)3n~l)(p,) (pk)(p'k) k 2 

(pk)(p'k) 
+ F~k(Ko ; p, p')3n~l)(p ') k 2 

p,)3n(1)(p,) (pk)p'k)] + Gtk(Ko ; P, , ' " ~ - - 3  

× [O(E,~(p')--/~)- O(eT(p' ) --/~)] q- [ F~,$k(Ko; p, p') P-~ 

+ F,,k(Ko; p,p') P-~+ F,,k(Ko; p,P') P-~+ Fv~k(Ko; p,P') P-~ 

+ F ~ ( K o ;  p, ¢ ) S n ~ ' ( p ' )  P'k+&~(Ko; p, p')Sn~')(p ') 
k 

+ F~(Ko; p, p')Sn~l)(p ') P-~k-kk + F~,(Ko; p, p')3n~l)(p ') p_~k ] 

k 8 ( ~ , ( p ' ) - ~ )  ( 2 ~ ) ~ j  

d3p 
x [O(&(p)  - ~ )  - O(e,~(p) - ~ ) ]  (2,n.) ~ 

1 

'I - ~  [F**~o(Ko; p, p') 

+ F~,ko(Ko; P, p') + F,~ko(Ko; P, p') + F**ko(Ko; P, p')] 
d3p ' 

x [ 0(e~(p') - /z)  - 0(eT(p') - /z ) ]  (27r)3 ] 

d3p 
x [0(e~(p) - ~) - 0(e,(p) - ~)] (2~r)3, 

o%~,,(p) 
0e~,~(p) m~'t(P)Su = Opi Op 7 v ~ a ( p ) =  ap ' 

02F~(Ko; P) 
F~k,k~(Ko; p) = ak, a~  ' 

and the same for other "arrow" components of F and W. 

(49) 

(50) 
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Let us also transform Eqs. (8), (9) to the above set of  variables. These 
equations are practically identical, and correspond to Eqs. (34) with K = Ko 
(48): 

W~(p) = ~  f [Fj,~(p, p ' )+  F~,(p, p')] 

d3p ' 
× [ O ( e ~ ( p ' )  - -  ~ )  - -  O ( e + ( p ' )  - -  ~ ) ]  ( 2 ~ . ) 3  , 

Wt(p) = 2 f [F,~j,(p, p') + F, tr(p, p')] 

n d  3 ' 
X [O(e~(p') -- ~) -- O(e~(p') -- ~)] ~7-~,3, 

z£zrr) 

Here we introduced the notations 

W~(p) = W~(Ko; p), F,k(p,p')=F,k(Ko;p,p'), 

and used Eq. (46). 

(51) 

{~k}={~,~} (52) 

4. P H E N O M E N O L O G I C A L  EQUATIONS OF TRANSVERSE 
SPIN DYNAMICS 

We want to establish links with a standard phenomenological Landau 
theory, and to develop a macroscopic version of the above equations. The 
Landau description of Fermi liquids is based (for details see Refs. 18, 22) 
on a concept of a nearly ideal gas of quasi-particles with a mean field 
Landau interaction. This interaction is proportional to the deviation of the 
quasi-particles' distribution 8n~(p) from equilibrium, and is determined by 
the Landau interaction function F~,~,(p, p'). The Landau interaction can be 
best described by adding an additional term to the phenomenological 
quasi-particles' Hamiltonian: 

8e~(p) = Try, f F~,~,(p, p')Sn~, d3p (53) 
(2~r) 3 

where 8e~(p) is the change in the energy of quasi-particles with spin o- as 
a result of  change in the distribution function of  quasi-particles 8n~,(p'), 
and the spin structure of  the Landau interaction function has the following 
simple form in the absence of polarization 

F~ ,< (p ,p ' ) - '  s , , , o - ~ F  ( p , p ) + ~ m r  F (p,p') (54) 

Spin polarization of a Fermi liquid results in certain obvious and some 
more subtle changes. One of these changes is a definite non-locality of the 
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theory (see comments in Refs. 2, 6), especially if one is interested in trans- 
verse spin dynamics up to the terms of the order k 2. The corresponding 
generalization of the theory is straightforward: Eq. (53) should be sub- 
stituted by a non-local expansion of the single-particle Hamiltonian in 
changes of density distributions 8n~(p, r) and their spatial derivatives: 

f d3p, 8e¢(p, r) = Try, F¢:,(p, p')an¢,(p', r) (2~r)3 

f d3p , F(i) (_ , t + Tr,,, ~,~',1,, P )ViSn~,,(p, r) (27r3) 

f F(ik) (-- d 3 , 
+Try, --~:',IJ, P')V~VkSn(p',r) (2~)3÷. . .  (55) 

where the "additional" Landau functions F (i) and F "k) may be either 
considered as some new phenomenological interaction functions or 
expressed through the vertex part and its harmonics. Generally speaking, 
the gradient expansion (55) should contain all derivatives of the distribution. 
However, we are not interested, at least in this particular context, in 
transverse phenomena beyond the k 2 accuracy--the higher order terms in 
k should be always neglected if one wants to maintain some link between 
a longwave microscopic description and some semi-classical macroscopic 
("hydrodynamic") approach to magnetic phenomena. Therefore, it is rea- 
sonable to truncate the expansion (55) after the second-order gradients. 

Since the time and spatial dependencies of the distribution 8n~(p, r, t) 
are the exponential ones (see Eq. (6)), the equation (55) can be rewritten as 

/3~, p + k , p - ~ ) S n ~ , ( p )  d3p ' 
8e~(p)=Tr~,f  . ( z ' k ' (27r)3 (56) 

where the derivatives of the function t3 are equal to the above functions 
F (° and F(~k): 

i (a/3c:,(p, p,) a/3 ,(p,  p,)) 

ap, - '0e:  ' 

.k)  , 1 ( : L : ( p , p ' ) + : L : . ( p , p ' )  

p') 

ap~ apk ap~ ap~ ] 
(57) 
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In case of polarized systems, the spin structure of the non-local interaction 
operator F,,.,, is different from a simple form (54)~: 

F,,,,,,(p, p ) - F~(p, p )+ F2(p, p')o-o-' + {ff'3(P, p')o-e +/33(p' , p)o-'e} 

+ F,,(p, p')(o'e)(o"e) (58) 

where e is the unit vector in the direction of the equilibrium spin polarization 
(usually, the z-direction in spin space). 

Eqs. (56) (or (55)) and (58) should be substituted into the semi-classical 
Landau kinetic equations for the quasi-particles, 

- - -  i[t$, ~] = 0 (59) Ot 

where the linearized quantum commutator, 

^ ^ A 8A (-~B (°) f -  k~ _B~),,( k~sa~,,~r,(p) [A+aA, B+aB]~,= ~,,,l,, ~,,~,kv--~} \P+ 
2 ]  

-SB~,,(p)A~),,~,(p-2) + A~)~,,(p+k)sB,~,,,,,(p) (60) 

includes both the spin commutator and the semi-classical Poisson bracket. 
The resulting equation is usually supposed to give a correct macroscopic 
picture of longitudinal (pure spin components of a) and transverse (mixed 
spin components of a) macroscopic phenomena in spin-polarized Fermi 
liquids. 

Unfortunately, this simple picture does not correspond to the 
above microscopic equations, and fails to give a proper macroscopic 
description for transverse phenomena. The transverse dynamics cannot be 
described by a single kinetic equation of the type (56)-(60) in mixed spin 
components of some single distribution function a, but, instead should 
be described with the help of two coupled kinetic equations of the type 
(34) in two-component distribution function. Therefore, the proper 
phenomenological theory should be constructed along the same lines as 
it is sometimes done ~ for longitudinal phenomena using an analogy between 
a spin-polarized system and a binary mixture of spin-up and spin-down 
components. 

For longitudinal processes, i.e. for diagonal components of the single- 
particle density matrix, such an analogy is quite natural and very simple. 
We do have two sorts of (quasi-) particles, Ntl.(p ) and N~,(p), with different 
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energy spectra, ett(p) and e++(p), and with different equations of motion 
coupled only through the mean field Landau interaction (and, at finite 
temperatures, through the collision operator). These (quasi-)particles 
remain near the corresponding Fermi surfaces throughout the interaction 
processes, while their total numbers remain constant. 

For some reasons, this analogy has not been used before for a descrip- 
tion of  transverse effects, i.e. for off-diagonal states of (quasi-) particles 
Nt~(p). Here one usually assumes that there is only one type of  off-diagonal 
states. This would be true if one would deal with bare non-interacting 
particles (say, in a dilute gas). Then it would be of  no interest what sort of  
particles (spin-up or spin-down) acquires off-diagonal spin components by 
flipping onto xy-plane. This is not necessarily so for dressed particles: these 
particles are dressed in a different way depending on the spin projection, 
and the energy/response may be different depending on which sort of  
particles got flipped even if the resulting density perturbation 6Nt+(p) is 
the same. 

One can put it in a different way. In case of bare non-interacting 
particles, one can obtain a spin-down particle with some momentum p and 
energy spectrum eT(p) by simply turning over a spin-up particle with the 
same momentum. However, when one changes the spin projection of a 
dressed (quasi-) particle with momentum p in a strongly interacting polarized 
system, one ends up with a (quasi-) particle with some energy g+(p) different 
from expected e~(p). 

Transverse spin dynamics corresponds to dynamics of  (small) xy- 
components of  magnetization when the magnetization is slightly tilted from 
its equilibrium z-direction. When the magnetization is in equilibrium (until- 
ted), we have two types of particles--spin-ups and spin-downs in pure spin 
states. If one tilts the magnetization, one will also have particles in off- 
diagonal mixed spin states. The usual picture of off-diagonal particles 
presents them as particles oscillating between upper and lower energy levels 
corresponding to pure states. In case of  dressed Landau quasi-particles, the 
usual concept of  a mixed state is a quasi-particle oscillating between Fermi 
surfaces for up and down spins. However, we have seen in the previous 
section, that we have two types o f  mixed quasi-particle states: one oscillating 
from the upper  Fermi surface down to the surface shifted from it by the 
bare Larmor frequency 2f i l l  and back, and another oscillating from the 
lower Fermi surface up to the surface shifted from it also by the bare Larmor 
frequency and back. Since the distance be tween the Fermi surfaces for 
dressed spin-up and spin-down particles (39) 2fl ir t  is very different from 
the Larmor frequency 2fill, the frequencies of  these two types of  oscillations 
are different. What is more, it is obvious that the molecular fields acting on 
these two types of oscillating off-diagonal states should also be different. 
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Therefore, when we slightly tilt the direction of magnetization, we end 
up with two types of oscillations: for initially spin-up particles--between 
the state with the spectra e~(p) and the pseudo-state ~s(p), and for spin-down 
quasi-particle--between the state e~(p) and the pseudo-state ~t(P). These 
four types of states are defined in adifferent way by mass operators (37), (38): 

p2 

~ ( p )  = ~-~m + ~ ( ~ ( p )  - ~ ,  p) - ~ S ,  

2 
~t (p) = ~ + E~¢(e~(p + k) - / z  - 8w - 213H, p) - fill, 

p2 

e~(p) = ~--~m + Y~(e~(p) - /z ,  p) + fill, 

(61) 

2 

~(P) = 2 ~  + y~(e~(p-  k) - / z  + 8oJ + 2fill, p) + fill ,  

In case of strongly interacting particles and noticeable polarizations, the 
spectra e (p) and ~(p) are definitely different. The mutual dephasing of these 
two types of oscillations is responsible in inhomogeneous situations for a 
noticeable inhomogeneous broadening resulting effectively in a zero- 
temperature attenuation. 

The above reasoning may sound rather vague if presented on a purely 
phenomenological ground. Nevertheless, we have a sound microscopic 
justification for separating off-diagonal perturbations by their origin. The 
exact microscopic transverse equations explicitly involve the transverse 
Green's function at two distinctly separate frequencies shifted by f~0 = 2/3H 
thus resulting in a strong temporal non-locality. There is no way one can 
rewrite these equations using only one density matrix which has a single 
time variable and corresponds to a single-frequency Green's function. 

Having established the existence of two types of off-diagonal states, 
we must write the "phenomenological" equations of motion for this objects 
in a spirit of Eqs. (56)-(60), but in a form reducible to exact microscopic 
equations (34), (41). One can do it in a several equivalent ways. The simplest 
and the most straightforward one would be just to introduce outright two 
phenomenological transverse densities oscillating between two pairs of 
states (61), and coupled via a 4-component non-local Landau operator. 

We feel that a better, though a slightly more cumbersome, way of 
introducing equations for phenomenological quasi-particles, is to introduce 
an auxilliary pseudo-spin operator t~ which has the structure of standard 
Pauli matrices and whose eigenvalues separate real quasi-particles' states 
and pseudo-states (the corresponding unitary operator will be denoted as 
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while the unitary operator in the usual spin space will be ~). The spin 
and pseudo-spin operators o7 and/~ operate in different spaces and, therefore, 
commute with each other. 

In equilibrium one has only spin-up and spin-down particles with the 
distributions Ntt(p ) = 1 - O(e¢(p) - l z )  and N~(p)  = 1 - O(e~(p) - /x) ,  and no 
pseudo-particles. Therefore, the equilibrium distribution can be written as 

~(o) ,_, = kI[(2 - O(e¢ - /x)  - 0(es - / z ) ) g +  (0(e+ - /~)  - 0(e t -/~))cr z] (62) o.,o~,p) 

while the equilibrium single-particle Hamiltonian is also diagonal, 

^ ( o )  " /4~,~(p) = ¼(/+ t~)[(e~ + ~ ) ~  + (e~-- Z~),~] 
A 

+ ~ ( I  -t3~)[(g¢ + eS)6 + (e¢ - e+)o ~z] (63) 

where the arrow indices correspond to up and down spin states. Of course, 
since both ~¢0) and ~(o) do not depend on coordinates, the full quantum 
commutator (59), [~(o), ~<o)] =0.  When the particle distribution deviates 
from equilibrium, the change of  the single-particle operator will be deter- 
mined by some molecular field interaction, F, which should be defined as 
a two-particle operator in both spin and pseudo-spin spaces: 

" ~ d3p' ,, 
8H,,,o (p) = Tr,,, Trp, _ ~ F,,~,,oo,(k; p, p')6~,,,,(p') (64) 

where the presence of  the vector k in the argument of  the interaction operator 
takes into account the non-locality of  the interaction. The spin structure of  
the operator /~ is the same as in Eq. (58). 

There is no equilibrium polarization in the pseudo-spin space which 
results in a diagonal pseudo-spin structure of the operator F (i.e., the 
pseudo-spin structure of  the functions Fi in Eq. (58)): 

~,po'(k; P, p') = F~)(k; p, p ' ) f f '+  F~Z)(k; p, p')~/~' 

+ Fl3)(k; p, p')II3='+ Fl3)(k; p', p)t3z 1 '(65) 

The general kinetic equations (59), (60) corresponding to the quasi- 
particles (63)-(65) are very cumbersome. Therefore, in this particular 
context it is reasonable to restrict ourselves to the perturbation of  the 
spin-wave type which is off-diagonal in the spin space being proportional 
to ~ + = ~ x + ' ~ Y  m-, and is diagonal in the pseudo-spin space: 

B~,p(p) = ~+[(Snt(p) + 8n~(p))I + (Snt(p) - 8n+(p))t3 =] (66) 

where now the arrow indices correspond to the up and down pseudo-spin 
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states. The corresponding change in energy is equal to 

^ I d 3 ' ,, 8H~p(k; p) = a + ~ [(IF")(k;  p, p') + fiZF(2)(k; p, p') 
' ( z z r )  

A 3 + IF(i )(k; p, p') + fi~F(3)(k; p', p))Sn t 

+ (_fFi~)(k; p, p') - fi~Fi2)(k; p, p') - ~F(23)(k; p, p') 

+ ~ZF(23)(k; p', p)) 8ns] (67) 

The full commutator (59), (60) contains a nearly standard dynamic part, 

[,S~,/~(°)]= - ~n,(p)~, p+ - e t  p _ k  8n,(p) 

+ ~n~.(P)ej.(P+k) - ~¢(P-k)~n~(P) ] 

+ ~z[ 'n,(P)~.(P+k) - e,(P-k)~n,(P) 

-'n,(p)e~(p+2) + ~.~(p-k)~n~.(p) ]} (68) 

and a Fermi liquid part, 

0 "+ d 3 p  ' k 

^ 1 × [(IFi )(k; p, p') + ~ZF(:)(k; p, p') 
A 3 + IF(2 )(k; p, p') + fi~F(z3)(k; p', p))~nt(p') 

^ 1 + (IF(2)(k; p, p ' ) -  ~ZF(22)(k; p, p') 

- -  iF(23)(k, p, p') + ~ZF(3)(k; p', p))Sn¢(p')] (69) 

Finally, the matrix kinetic equation (59), (60), (68), (69) can be written 
in a form of two coupled equations: 

(oJ + e¢(P - k )  - e s ( P + k ) )  ~n¢(P) 

1 I d3p'[O(ej,(p+2)-Ix)-O(e,(p-k)-tz)] =- ~ ' ~  2 
× [(Fg ' (k;  p, p') + F(~:)(k; p, p') + F(:~)(k; p, p') + F(~)(k; p', p)),~n¢(p') 

+ (F(21)(k, p, p') - -  F(22)(k; p, p') - Fi3)(k; p, p') + F(3)(k; p', p))/in~(p')] 
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d3p ' 

× [(Fg')(k,  p, p') - F~2)(k; p, p') + Fg3)(k, p, p') - Fg3)(k; p', p))6nt(p')  

+ (F~)(k ;  p, p') + F~2)(k; p, p') - F~3)(k, p, p') - F~3)(k, p', p))6n~(p')] 

(70) 

Compar i son  of  Eqs. (70) with exact microscopic  equat ions (34), (45) 
shows that the above  phenomenologica l  picture coincides with the micro- 
scopic descript ion developed in the previous section. The only visible 
difference concerns the slightly different ways in which the factors O~ - 0 t 
enter the equations.  However ,  this deviat ion is not at all significant, and 
can be easily taken care of  by  redefining the variables 6n~. t by including 
these factors into them, 6ns. t = (0~ - 0 t )8~,  s. As a result o f  such a transforma- 
tion, Eqs. (70) assume the form (34) with 

, ~ ( 2 ) (  . + F ( a ) ( k ;  p,,  Fry(K; p, p') = F(21)(k; p, p ) + r 2  ,k, p, p') + F(23)(k; p, p') p), 

Ft'(K; P' P') = F~l)(k; P' P') - F(22)(k; P' P') - F(23)(k; P' P') + F(23)(k; P" P)'(71) 

F~t(K; P, p ' )  = F(21)(k; p, p') - F(EE)(k; p, p') + F(23)(k; p, p') - r(23)(k; p', p), 

F~(K; p, p') = F(E1)(k; p, p') + F(E2)(k; p, p') - F~a)(k; p, p') - F(23)(k; p', p). 

One can also add here the equat ions analogous to Eqs. (51), 

(w+et(P)-~(p))=~f d3 ' ( ~ f ) 3  [ 0 (e~(p) - ~)  - O(et(p) - / ~ ) ]  

x [ (Ft t (p  , p ' )+  Ft , (p,  p')] 

(to-e,(p)+6¢(p))=l f ~[O(e,(P)-I.O-O(e,(P)-t~)] 

x [(F~t(p, p') + F~(p ,  p')] (72) 

which correspond to a homogeneous  k = 0 rotation of  magnetization,  and 
which ensure that the eigenvalue of  Eqs. (70) at k = 0 is the bare Larmor  
f requency 2fill. 
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In essence, this completes the phenomenological description, and 
confirms the validity of the picture of transverse phenomena based on a 
doubling of relevant states (spin-up and spin-down states and pseudo-states). 

The remaining difference between the microscopic and phenomenologi- 
cal approaches concerns some residual temporal non-locality of microscopic 
equations which manifests itself in a presence of the frequency &o in the 
argument K = (&o +2/3H, k) of the functions in the l.h.s, of Eqs. (71) and 
(and, actually, in the energy spectra of the pseudo-particles (61)). This can 
be reconciled only by a direct introduction of &o into the arguments of 
phenomenological functions. 

5. SUMMARY 

The main result of this paper is a consistent theory of transverse 
dynamics in polarized Fermi liquid based on exact microscopic equations 
(Dyson equations (1), (2) at T=  0). The only assumption is an existence 
of a pole of Green's function for a pure spin state on the corresponding 
Fermi surface. Another very important feature of the theory is its intrinsic 
spatial and temporal non-locality. 

An attempt to rewrite the exact equations in Green's functions (7) as 
equations in distribution functions of some quasi-particles (34), in a spirit 
of the Landau theory, results in a necessity of introducing two types of 
transverse quasi-particles (33)--generically, the transverse quasi-particles 
originating from spin-up and spin-down quasi-particles with slightly tilted 
spins. The dynamics of these two types of transverse quasi-particles is 
associated, bascially, with oscillations between their proper Fermi surfaces 
and some isoenergy surfaces (38) shifted from the Fermi surfaces by the 
bare Larmor frequency 2fill. As a result, the generalized Landau theory of 
transverse dynamics somewhat resembles the theory of binary Fermi liquids 
which has been used so far 1 for a description of the longitudinal spin 
dynamics exclusively. 

In the limits of low density or polarization, the equations in different 
transverse quasi-particles coincide with each other, and reduce to a single 
Silin-Leggett equation of the standard Landau theory. 

In a general case, the molecular field, i.e. the Landau interaction, is 
given by a 4-component integral interaction operator (36). The components 
of this operator are expressed via the exact irreducible vertex part with the 
help of the integral equation (23), and cannot be represented, as it is usually 
assumed, by some limit of the full vertex. 

In a homogeneous setting, both types of transverse quasi-particles 
precess around the magnetic field with the same bare Larmor frequency. 
However, the spin-up and spin-down quasi-particles are dressed in a 
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different way which leads to a noticeable dephasing of precession in 
inhomogeneous situations when the driving force includes different com- 
ponents of the interaction operator for different quasi-particles. This dephas- 
ing leads to an inhomogeneous broadening which manifests itself effectively 
as some strong zero-temperature relaxation associated with imaginary off- 
shell contributions. 

Technically, this zero-temperature attenuation arises from complex 
terms in mass operators away from Fermi surfaces for pure spin states, 
temporal non-locality resulting in complex shifts of energy components of 
participating 4-momenta, and from momentum derivatives of the vertex 
functions in off-shell directions. 

The zero-temperature relaxation is related both to complex values of 
energies for transverse quasi-particles' states, and to a strong attenuation 
of spin waves of the Landau-Silin type even in the limit of large wavelengths. 

The results of this paper are applicable not only to spin-polarized Fermi 
liquids, but to any binary or two-level Fermi liquid (or even to a Fermi 
liquid of multi-level particles, see Ref. 23). The nature of internal levels of 
constituting particles is absolutely irrelevant. What is important is the 
assumption that the energy separation between internal levels of bare 
particles should not depend on their momenta. Otherwise, all the results 
of this paper can be applied to any two-level Fermi liquids without noticeable 
modifications. Of course, an experimental observation of the discussed 
effects is simpler at low temperatures for spin systems than for two-level 
systems of any other nature because of readily accessible NMR or EPR 
techniques. 

The next parts of this series will deal with low density Fermi liquids 
and with polarization expansions. We will present more detailed analytical 
and numerical results for the dynamic characteristics and the zero- 
temperature relaxation. 

This work has been supported by NSF DMR-9100197 and URI Council 
for Research 9091-0350. 

APPENDIX A 

The full self-energy operator E(Pl, P2) can be expanded in skeleton 
diagrams containing thick lines (exact Green's functions) and bare vertices 
only. None of these diagrams can be reduced into two by cutting any two 
thick lines. Since bare vertices do not depend on the Green's functions, the 
variational derivative (-i82(P1, P2))/(iSG(P3, P4)) is obtained by cutting 
one line in each of these skeleton diagrams in all possible ways, and ascribing 
the sets of 4-momenta and spin variables P3 and P4 to the new free ends. 
The sets of variables for the ends of the initial diagrams are Pl and P2. We 
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consider only small inhomogeneities. Therefore, one can represent the above 
4-momenta in the following way: 

K K K K PI=P+-~, P2=P--~, P3 = P ' - ~  - , P 4 =  e ' + ~  - 

where K is small. 
The four-end diagrams, resulting from the cuts of E(P1, P2) through 

one of the thick lines, are skeleton diagrams for some vertex part. We will 
prove now that the set of all these resulting skeleton diagrams corresponds 
to the full irreducible vertex part. 

Suppose that it is possible to obtain a reducible diagram for the vertex 
by cutting one line in some self-energy skeleton diagram. We can present 
this reducible vertex diagram as it is shownin Fig. l(a). Then the original 
self.energy diagram is obtained by connecting the two ends with variable 
sets P3 and P4 by a thick line (Fig. l(b)). But the resulting self-energy 
diagram is not a skeleton diagram of the type described above: it can be 

P+K/2 P'+K/2 
~ .  Q+K/2_ / 

-Q-K/2 
i 

P-K/2 ~ P'-K/2 
a 

P+K/2 

Ji ii iZi iiiiiii ii 
P'-Iq 2 

1 

i 
0+K/2 

! 

b 

Fig. 1. (a) A reducible vertex diagram. (Appendix A). (b) The 
corresponding self-energy diagram (Appendix A). 
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P+K/2 P'+K/2 

:!:i:!:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i . , . . . , . . . . . . . . . , . . . , . . . , . . . . . , . . ,  

i!i!iii!i!  !i!ii!i!iii! 
:::::::::::::::::::::::::::::::::::: 

P-K/2 P'-K/2 

P+ q2 

/ 
P-K/2 

Io 

Fig. 2. (a) An irreducible vertex diagram. (Appendix A). (b) The corresponding self-energy 
diagram (Appendix A). 

CUt into two diagrams by the dashed line. Therefore, all the diagrams 
contributing to the variational derivative -i6E(P1, P2)/i6G(P3, P4) belong 
to the set of  diagrams constituting the irreducible vertex. 

Now let us show that all of the diagrams of the irreducible vertex 
belong to this variational derivative. Indeed, any irreducible diagram 
iF1(P,, P3; P2, P4) (Fig. 2(a)) can be obtained from a self-energy diagram 
as shown on Fig. 2(b). Suppose this self-energy diagram is not a skeleton 
diagram of  the above type. Then it can be cut into two by cutting two lines. 
Both of  these lines should be in iFl(P1, P3; P2, P4), since a vertex part 
cannot be cut into two by cutting one line. But this means that 
iFI(P~, P3;/>2, P4) can be cut into two by cutting two lines going in the 
opposite directions with almost equal momenta, which contradicts to the 
assumption that the original vertex part is irreducible. Thus we have proved 
that the variational derivative contains all and only all the diagrams entering 
the full irreducible vertex. 

It is also obvious that each of  the irreducible vertex diagrams is 
generated by only one skeleton diagram for self-energy (Fig. 2(b)), that is 
the diagram obtained by connecting the two ends with variable sets P3 and 
P4 by a thick line. Therefore 

8E(P~, P2) _ iF(P~, P3; P2, P4) 
6G( P3, P4) 

where I ' (P, ,  P3 ; P2, Pa) is the full irreducible vertex part. 

APPENDIX B 

We want to prove that the first derivative of the irreducible vertex over 
k is zero at k = 0. In principle, one can always achieve this by a proper  
choice of  variables. Our choice of  incoming (P+K/2, P ' -K/2)  and 
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P+K/2 ,  1 P-K/2,  I P+K/2 ,  1 P-K/2,  1 

P'-K/2,  I a P'+K/2,  1" P'-K/2,  ~ b P'+K/2,  1" 

Fig. 3. (a) The full irredicible vertex. (Appendix B). (b) The diagram obtained from the full 
irreducible vertex by changing the directions of all the arrows on the lines (Appendix B). 

outgoing (P-K~2,  P'+K/2) 4-momenta has been done in such a sym- 
metric form partially in order to ensure the disappearance of  this derivative. 

Consider a diagram for the full irreducible vertex part (Fig. 3(a)). If  
we change the directions of  all the arrows on the lines (not the spin states !), 
neither the Green's functions nor the bare vertices change. Therefore, the 
full irreducible vertex part does not change either (Fig. 3(b)). As a result, 

Ft~,~t(K; P, P')  = [ '~4 t (K;  P',  P)  = F~t , ts(-K; P, P ')  

On the other hand, the irreducible vertex should be invariant if we change 
all the spin arrows and the direction of  the magnetic field to the opposite. 
Since Ko = 2fill + ak u, Ko changes to - K o  under this transformation within 
the first order in k: This means that with the same accuracy 

F~ , t~ ( -K;  P, P')  = I't~,$t(/(; P, P ' ) , / (  = ( K o , - k )  

But this, in turn, means that the irreducible vertex is invariant under k - ,  - k  
transformation, and 

a~t,,~(K; P, P')I 
~ 0  

Ok [ k=0 

A P P E N D I X  C 

First we substitute Eq. (22) into Eq. (7) and cancel out G~ - Gtt from 
both sides: 

- - ~  J / g ( f ' )  7T-~,4 (C.1) 
,~ / J (2~) 

Representing the difference of  the Green's functions G ~ -  Gtt in Eq. (C1) 



816 A.E. Meyerovich and K. A. Musaelian 

b y  its singular and regular parts via Eq. (20) and regrouping terms, we obtain 

f [ ~(4)( P-  P') - Ft~.~t( K; P, P')~b,( P' + f , P'-~K) ] 

x(&o --~--- Es,(P p ' k  ,.K,+Ett(p,_K))~,(p,)d4p't_~] 
(2~) 4 

d4p , 
= f ~t~.~t(K; P,P')G(P'+f,P'-f)~(P') (2~r)4 (C.2) 

On the other hand, we can rewrite Eq. (23) as 

I't~,,t( K ; P, P') = f [ '(')( P-  Q ) - ['t~,~( K ; P, Q )4~,( Q +K, Q-~K) ] 
d4Q 

x~(K; Q, P') (27r)4 (C3) 

Now we can combine Eq. (C.3) and Eq. (C.2) into a single equation: 

- - f  ~ (g ;  ( __K f )  ~ - - ~ j  ~ - ~  = 0 d4P'l d4Q (C.4) O,P')6s P'+2, P'--i e(z) 

We assume that the integral equations (23) and (C.3) have a unique solution 
~. This means that the operator represented by the kernel of the integration 
over Q in Eqs. (C.3) and (C.4) is non-degenerate and, therefore, has an 
inverse. Consequently, the only solution of the integral equation (C.4) is 
given by 

which is equivalent to Eq. (21). 
In the Landau-Silin case an equation analogous to Eq. (23) (see e.g. 

Ref. 22): 

r,~,,t(P, P') = Fts,,t(P, P') 
I d4 Q 

+ Fts,~t(P, Q)~br(Q, Q)F¢~.,t(Q, P') (2Ir)4 (C.5) 
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can be used as an alternative definition of the Landau function F °'. The 
presence of the 4-vector K in Eq. (23), in contrast with Eq. (C.5), incorpor- 
ates the temporal and spatial non-localities. These non-localities become 
essential for a highly polarized Fermi liquid. Then Eq. (21) plays the role 
of a non-local analog of the Landau-Silin equation. Note, that the temporal 
and spatial non-localities are taken into account not only in the generalized 
Landau function if, but also in the singular part Ss(P+ K/2, P-K/2). 

APPENDIX D 

The singularity in the full vertex in the particle-hole channel leads to 
the following well-known relation between the full and the irreducible 
vertices 22: 

r~,~(K; P, P') = I'~8,~(K; P, P') 

d4Q 
- i f  I'~,e.,~n(K;P,Q)Ge,(Q+~K)Gn,,(Q-~K)F,,8,,~(K;Q,P ') (2qr)4 

This singularity, being nested in the product of the Green's functions, 
originates from the pinching of the contour of integration over q0 between 
the poles of the two Green's functions. The Green's functions can be written 
as: 

Gt,~.~.~( p ) = 7_,, $(p) + G~.$( P) 
P0- e¢.~(p) +/~ + i0 sign P0 

The contour of integration over qo can be closed in an infinite semicircle 
in either the upper or the lower half-plane. Therefore, the poles of the 
Green's functions are important only if they appear in the different half- 
planes, so that one cannot avoid them by any choice of the contour of 
integration. The residue at the corresponding pole will give the singular 
part of the product of the Green's functions ths leading to Eq. (19). 

The pinching of the contour between the poles of the Green's functions 
occurs when the 3-momentum arguments of the Green's functions appear 
on the different sides of their respective Fermi spheres: one inside its Fermi 
sphere and the other outside. Then one of the Green's functions corresponds 
to a particle and the other to a hole. The region of the p-space where such 
a situation occurs is shown by a shaded area on Fig. 4(a) and Fig. 4(b) for 
a non-polarized and a polarized Fermi liquid respectively. The vector k 
describes the shift between the centers of the spheres for spin-ups and 
spin-downs. 
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a b 

Fig. 4. (a) Two Fermi spheres for spin-up and spin-down particles in an unpolarized 
Fermi liquid. The shaded area is responsible for the particle-hole singularity. The 
spheres are shifted with respect to each other by a vector k (Appendix D). (b) Two 
Fermi spheres corresponding to spin-up and spin-down particles for a polarized Fermi 
liquid. (Appendix D). 

In case of a non-polarized Fermi-liquid (Fig. 4(a)), the shaded area 
responsible for the singularity is defined by 

o r  

Therefore, the singular part d~, contains a factor O([q+k/2l-p~)- 
0(Iq-k/21--PF). At small k this factor reduces to qkS(q--PF). Thus in the 
limit k ~ 0, when the centers of the spheres merge, the shaded area disappears 
(Fig. 5(a)) and the singularity in the particle-hole channel is suppressed. 

In case of  a finite polarization (fig. 4(b)) the shaded area is defined by: 

I q + k l > p ~ ,  q _ k  <P~, 

provided that qk/m < 2fill. Therefore the singular part qSs contains a similar 
factor 0(Iq + k/21 - p~) - 0( lq-  k/21 - p,). Unlike the unpolarized case, the 
shaded area remains finite at any choice of k (Fig. 5(b)): since the radii of 
the spheres p~ and p~ are different, one cannot eliminate the shaded area 
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a b 

Fig. 5. (a) The shaded area disappears when the Fermi spheres for spin-ups and 
spin-downs merge in case of an unpolarized Fermi liquid with k = 0 (no shift) (Appendix 
D). (b) In case of a polarized Fermi liquid, the shaded area always remains finite, 
because the Fermi spheres for spin-ups and spin-downs cannot merge at any k, including 
k = 0 (Appendix D). 

by any shift of the spheres. Thus the the above factor O([q+k/2[-p~)- 
O([q-k/2]-Pt) entering the singular part ~bs does not vanish. 

APPENDIX E 

A Green's function G~ or G~ of a Fermi liquid can be separated into 
its singular and incoherent parts in the following way (see Eq. (27)): 

ZI"'~ (P) F G~,~(P) (E.1) 
G~,,~(P) = Po- et.~(P) +/z + i0 sign Po 

We want to extract the g-type singularity associated with the pole of the 
Green's function (E.1) with the help of the theory of generalized functions. 
Consider an integration of the Green's function (E.1) with some arbitrary 
function f(Po) over Po along the real axis Impo=O. Suppose the pole of 
the Green's function Po = e(p) - /z  is in the upper half-plane of the variable 
Po (see Fig. 6). The integration over Po along the real axis is equivalent to 
the integration along the contour C~ plus the integral along C2. Contour 
C~ is parallel to the real axis and circles the pole from below infinitely close 
to it. The closed contour C2 consists of the real axis, the horizontal line 
Im Po = Im e (p ) -  0 infintely close to C~, and two infinitely remote vertical 
stretches. The integrals along these two vertical paths, obviously, vanish. 
The direction of integration along the upper horizontal line in C2, Im Po = 
Im e(p)-0 ,  is opposite to that in C~. Therefore, the sum of these integrals 
is zero. 
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C 1 e(p)- 

C2 

Im Po = Im e(p)-  0 

Im po = 0 

Fig. 6. The contours of integration C~ and C 2 in the complex 
plane of variable Po (Appendix E). 

The overall integration along C2 is equal to the sum of residues inside 
this contour. It contributes only to the function G'  in (E.1), since the pole 
of the Green's function is left out of the contour. The integration along C1 
should be performed using a well-known equation, 

1 = p l +  iTrS(x) (E.2) 
x - i O  x 

where P indicates that the integration should be taken as a principle value. 
Indeed, the integration along the semicircle around the pole gives a half- 
residue at the pole, while the integration along the rest of the contour C1 
gives the principle value of the integral and, therefore, contributes only to 
G r As a result, the singular part of the Green's function associated with 
its pole (E.1) can be presented by a 8-function: 

Gtt,~(P)= i~'Z~,~(p)8(po-et4(p)+ l~)+ G~4(P) (E.3) 

where G" includes not only G r (E.1), but also the regular terms coming 
from the principle value of the integral along the contour C1, as well as 
the overall integration along the closed contour C2. 

If the pole of the Green's function appears in the lower half-plane, 
then the analogous formula is: 

G~¢,~(P) = -iTrZ%~(p)B (po- e~4(p) +/~) + G~,~(P) (E.4) 

Note, that the Green's function of an ideal gas can be decomposed into 
singular and regular parts in a similar way: 

1 - P 1 -iTrS(po-oP--~z+lz)sign po (E.5) p2 . p2 
p o - ~ m  +/z + t0 sign Po PO-~m +/-~ 



Transverse Spin Dynamics in Fermi Liquids. I 821 

The product of the Green's functions contains the particle-hole singu- 
larity if the poles of the two Green's functions appear in the different 
half-planes (see e.g. Appendix D). Then this product can be rewritten as 
follows: 

=i~r[O(e, (p+k)- t~)-O(et (p-k)- f t )]  

x [ Z t ( P - k ) 8 ( P o - ~ - f l H - e t ( P - k ) + p ) G ~ ( P + K )  

-Z*(P+k)8(Po+~+flH-e*(p+k)+")Gtt(P.~K)] 

where 4~, is trivially related to the functions G" above. The difference of 
0-functions in (E.6) assures that the poles of the Green's functions are on 
the different sides of the contour of integration. 

The Green's function can be also expressed through the mass operator: 
p2 

Gtt.~ ( P ) = [ po- ~m + fl H - T.,t.~ ( P ) - i~ ]-' (E.7) 

Substituting Eq. (E.7) into Eq. (E.6) and simplifying it, we obtain: 

izr 0 e~ p + k  _ Gt'(P-2K)G~(P+K) = [ ( ( 2 )  / ' ~ ) - / ' ~ ( e t ( P - 2 ) - / ~ ) ]  
k 

Z k k x[ ,(p 
+Z,(P+k)5(Po-e,(P+k)+l~)] 

1 
x 
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A simple comparison of  Eq. (E.8) with Eq. (19) leads to Eq. (30) for ~bs : 
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