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Boundary conditions are discussed for spin dynamics equations in dilute spin- 
polarized quantum gases. The bulk equations have the macroscopic "'hydro- 
dynamic" form even when mean free paths of the particles are large, and the 
main question is whether a supplementary "hydrodynamic" boundary condition 
is valid. Different boundary processes are considered including spin-conserving 
and non-conserving reflections, slip, formation of adsorbed surface layers, etc. 
The macroscopic boundary condition fails in the cases of very effective surface 
processes with violation of thne-reversal symmetry (e.g. spin-lattice relaxa- 
tion) or very high surface-induced diffusion rates. Otherwise, the surface pro- 
cesses are described by a simple boundary condition or by S-type singularities 
in bulk equations. The meaning of different macroscopic parameters is clarified. 
The formation of dense adsorbed boundary layers changes the frequency shifts 
and linewidths of spin-wave resonances because of effective exchanges between 
sutface and bulk particles and strong interactions within the boundary layers. 
Here the broadening of resonances is explained not only by additional surface 
dissipation (diffusion), but also by dephasing processes originating from a 
renormalization of the molecular fieM in the boundary layers. The results 
explain recent experhnents by the Cornell group. 

1. I N T R O D U C T I O N  

Spin waves in sp in -po la r i zed  q u a n t u m  gases are usually studied (see 
review I a n d  references therein)  a t  low t empera tu res  and densities of  gases 
when the mean  free pa ths  o f  par t ic les  are  qui te  long. In these conditions,  
one can  easily reach a K n u d s e n  regime where  col l is ions with the walls may 
become  m o r e  i m p o r t a n t  t han  the interaction processes in the bulk.  2 

Below I discuss sp in-wave resonances  tak ing  into  account collisions o f  
the par t ic les  with the cell walls. A general description o f  boundary scattering 
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and relaxation should include spin-conserving reflections, spin non-conserv- 
ing exchange and magnetic dipole processes, slip effects, sticking, the influ- 
ence of  possible adsorbed boundary layers, etc. Different complications are 
introduced step by step. For earlier results see Ref. 3 and references therein. 

An appropriate way to describe different surface processes is to 
incorporate them into some reasonable boundary conditions. Spin dynamics 
of  spin-polarized quantum gases is described by macroscopic equations of 
motion not only for a low-frequency "hydrodynamic" regime, but also for 
a high-frequency collisionless regime, i These equations in a uniform external 
magnetic field have the form of the well-known Leggett equations 

(co - ~o)M - kiJi = O, 
(1) 

( ~ -  i / z )  J i -  ( T / m ) k i M  = O, 

with the spin-wave spectrum 

co = ( T /m)k2 / ( f~  + i / r ) .  (2) 

Here co and k are the frequency and the wave vector of oscillations, T is the 
temperature, I)0 is the Larmor frequency in an external magnetic field, Je 
and M are the densities of  the spin current and magnetic moment, f~ is the 
frequency for the internal molecular field created by the coherent part of the 
interaction of the particles (f~>>kv, co-  f~0), m and v are the particles' mass 
and velocity. Below we ignore the Larmor precession and assume, where 
necessary, that we are dealing with the rotating reference frame, 09 --+ co - f~0. 

A natural boundary condition for these macroscopic equations of 
motion should be of the same order in gradients and have the form 

M + AniViM = 0, (3) 

where n is the unit vector normal to the boundary (into the gas), and A is 
some coefficient with the dimensionality of length. When Eq. (3) is valid, 
this coefficient contains all the information about the boundary scattering. 

Two main goals of  this paper are to determine the limits of applicability 
for the boundary condition (3) including the Knudsen regime, and to express 
A through characteristic parameters of the interaction of the particles with 
the walls. If or when the boundary condition (3) fails, the whole macroscopic 
picture becomes meaningless even if the bulk equations (1) themselves are 
still valid. In this case one should return to the Boitzmann equation with a 
proper kinetic boundary condition instead of Eqs. (1) and (3). 

In the simplest cases (see, e.g., Refs. 1-5) one finds either the zero spin 
current through the boundary, or the complete accommodation of magnetic 
moment at the non-magnetized wall. The spin current is proportional to a 
gradient of  magnetization, and the former case corresponds to A ~ m and 
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V;M=0. In the latter case A ~ 0 ,  and Eq. (3) reduces to M=0 .  Generally, 
the value of A depends on the structure of the walls, temperature, and the 
density of the gas N. In turn, the value of A determines the distribution of 
magnetization inside the cell, frequency shifts and linewidths. For example, 
in the simplest rectangular cell, the boundary conditions (3) lead for the 
standing wave M = MI exp(ikr) + M2 exp(-ikr) in the uniform field H to the 
dispersion relation 

tan k,L, = 2k,A/( 1 - k~A 2) (4) 

where indices characterize the directions in the rectangular cell with sizes Li. 
The eigenvalues of the wave vector k are real (corresponding to a non- 
dissipative standing wave) when A is real. As we will see later, the complex 
values of A and k originate not only from a surface dissipation, but also 
from some dissipationless dephasing surface processes. 

The situation is more complicated in a non-uniform external magnetic 
field when the bulk magnetization is given not by a combination of plain 
waves, but by the Airy functions ~b (cf. Refs. 1, 4) 

M(x)=Mo~b([__iG]l/3[_x.+ ~r_I+s~rT/Gm (|'" + [~2z2)1 ) (5) 

where Mo is a scaling constant, and the field gradient G is directed along the 
x-axis. Here the frequency shifts and linewidths of the spin-wave resonances 
are given by the substitution of (5) into the boundary condition (3) at x = 
0, 

~b (x = 0) + A~b'(x = 0) = 0 (6) 

The boundary condition at the second wall, x =  L, is irrelevant since the 
magnetization near this wall is very small, M(L) --* O, due to strong inhomo- 
geneity caused by the field gradient G. 

Therefore, one has an additional reason to try to justify the use of 
macroscopic boundary conditions (3): the evaluation of the frequency eigen- 
values (2), (5), (6) is rather cumbersome even if Eq. (3) is valid. If the 
macroscopic descripion fails, even only because of boundary conditions, 
calculations for inhomogeneous situations would become extremely difficult. 

2. DIFFUSIVE AND SPECULAR REFLECTION BY 
NON-MAGNETIC WALLS 

At low temperatures, the wavelengths of the particles are large in com- 
parison with a characteristic atomic size, $>>a, and the particles are mostly 
scattered elastically by the walls. In most of the experiments, the walls are 
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magnetically protected, and the reflection is spin-conserving. However, there 
is a competing factor: an attraction to the walls becomes more and more 
important with lowering temperatures leading eventually to a formation of 
adsorbed boundary layers. The appearance of such layers results in a signifi- 
cant surface magnetic relaxation which, in turn, influences the bulk relaxa- 
tion because of strong exchange between surface and bulk particles. 

The adequate macroscopic boundary conditions should be formulated on 
the basis of a collision operator in the Boltzmann equation including collisions 
of the particles with the walls. The goal here is to determine what happens to 
the particle-surface collision operator in course of derivation of the macros- 
copic equations of motion by integration and parameterization of the Boltz- 
mann equation. Since we are dealing with very dilute gases, the linearized 
collision integral may be separated into independent bulk and surface parts: 

L(n) = Lo(n) + L~(n). (7) 

If the walls are non-magnetic, and particle-surface, as well as particle-parti- 
cle, collisions are spin-conserving, the traces over the spin and spatial vari- 
ables of the collision operators, multiplied by spin, are equal to zero, 

Tr~ 6{Lv(n) + Ls(n)} = 0, (8) 

and the first macroscopic equation of motion--the magnetic moment conser- 
vation law--has exactly the same form as in the absence of the boundary 
collisions, Eq. (1), 

OM/Ot + div J = 0. (9) 

The second macroscopic equation, the equation in Ji, contains two 
types of interaction terms: the molecular field and dissipative terms. The 
molecular field originates from non-zero spin commutators for particles. If 
the walls are non-magnetic, all spin commutators containing the wall vari- 
ables are equal to zero by definition, and the collisions with the non-magnetic 
walls do not renormalize the molecular field terms. This resembles the irrelev- 
ance of non-magnetic bulk impurities for the bulk moleclar field.~ Then, 
if one is not interested in dissipative diffusion processes, the spin current 
conservation law retains its bulk form, and the boundary condition reduces 
to (3) with A ~ ~ .  

The boundary scattering changes diffusion currents near the walls, thus 
contributing to the spin diffusion. If we were dealing, instead of wall scatter- 
ing, with a scattering by non-magnetic bulk impurities, the additional diffu- 
sion spin currents in the relaxation time approximation would look like 

Tr~ [d3p v,q{Lv(n)+L~(n)} = - J i / z - J J r s  = - J , / v e  (lO) 
J 
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where the effective relaxation time re is a combination of the particle-particle 
and particle-impurity diffusion relaxation times r and r, : 

r~-' = r -I + rj -l (11) 

Such an approach would be quite appropriate when describing, for example, 
the effect of 4He impurities on spin waves in 3HeT gas. The walls are also 
some S-type imperfections in the gas which limit the mean free paths and 
lead to an additional diffusion in a manner similar to bulk impurities. It 
would be natural to try to introduce the wall-induced relaxation r, in the 
form of Eq. (10) with S-type singularities. At first glance, the only precaution 
in using Eqs. (10) and (11) for the boundary scattering is to exclude the 
specular part of the reflection (non-diffusive scattering) and to be more 
careful with macroscopic boundary conditions on magnetic moment and 
spin current. As we will see, the influence of the boundary on spin waves in 
polarized gases does give rise to some additional S-type spin diffusion terms, 
but is not equivalent to a simple renormalization of the bulk relaxation time 
r. The proper parameterization differs from Eqs. (10) and (11) even in 
relaxation time approximations. 

A more realistic approach is to integrate separately the Boltzmann equa- 
tion in magnetic moment in the bulk of the system and in some boundary 
layer of the thickness a* with the boundary conditions in the form of the 
continuity equations for the magnetic moment and the spin current in these 
two subsystems. The bulk magnetic moment is given by exponents 
exp(~ikox) with k0 

k~=og(f~+i /r )m/T-q  2 , Im ko>0 (12) 

(cf. Eq.(2); q is the projection of the wave vector k on the plane of the wall 
x=const),  or by Airy functions (5), and within the boundary layer--by 
plain waves exp(+ikbx) with the value of kb related to the scattering of 
particles by boundary imperfections. Here the main simplification would be 
to describe the scattering within the boundary layer not in the form of 
integral operators but as linear combinations of spin densities and currents 
with the coefficients of the proper symmetry. The last step is the momentum 
integration of the corresponding equations simultaneously with directing the 
thickness of the boundary layer a* ~ 0. As a result, the macroscopic equa- 
tions of spin dynamics incorporate the boundary scattering in the form of 
different S-type singularities. In this way, the meaning of different boundary 
parameters becomes rather straightforward, and their values can be evalua- 
ted using the densities of different types of"imperfections" within the bound- 
ary layers of the thickness a* (usually, a* is of the order of atomic size a). 
An additional benefit of keeping a* in the equations is to have the boundary 
parameters with the same dimensionalities as their bulk counterparts. 
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Summarizing, one would expect the second macroscopic equation of 
motion (the equation in the transverse spin current J;) to have the following 
form for two walls at x = 0 and x = L (in the uniform magnetic field): 

- i~J~+(T/m)(O/~x~)M=-{1/r+(a*/r~)~ix[~(x-L)+~(x)]}J~ (13) 

where the "thickness" of the boundary a* ,--a is actually an auxiliary con- 
stant with a dimensionality of length. This constant is introduced in order 
to keep dimensionalities for all surface variables and densities the same as 
for their bulk counterparts; it never enters any equations as an independent 
parameter, but only in combination with other surface characteristics. Eq. 
(13) corresponds to the approximation somewhat similar to Eq. (10): 

Tr~ ~d3p v,~L~(n) = -(Ji/r~)a*[t~(x) + ~ ( x -  L)]. (14) 
d 

After the Fourier transformation, Eqs. (9) and (13) reduce to 

coM - ki Ji = 0 

(f~ + i~ z')Ji - -  (T/m)kiM (15) 

= --( ia*/Ts)~ix  [ J i ( x  = O) + J i ( x  = L) exp(ikxL)] 

(here and below, co is not a bare frequency, but rather co-  f~0). 
The solution of Eqs. (15) has the form 

ima* f kv dk~ 
M ( x ) -  - -  / ~  exp(-ik~x)[Jo+ JL exp(ik~L)] (16) 

2Jr Tr~ ,Jkx - k0 " 

where Jo=J~(x=0) ,  JL=Jx(x=L),  and ko is given by Eq. (12). 
The direct integration in Eq. (15) leads to 

ma* 
M ( x < 0 ) =  - - -  

2Trs 
[Jo + JL exp(ikoL)] exp(-ikox) (17a) 

m a *  
M(x > L) = ~ [ Jo + J r  exp(-ik0L)] exp(ikox) 

21r~ 
(17b) 

m ma*  
M(0 < x < L) - 2-~r~ [Jo exp(ikox) --JL exp(iko(L-x))] (17c) 

with the compatibility condition in the form of 

M(x < 0)  = M ( x  > L )  = 0,  M ( x  = 0)  = Mo, M(x = L )  = M L  ( 1 8 )  
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Comparing Eqs. (17) and (18), one has 

Jo + JL exp(ikoL) = J0 + JL exp(-ikoL) = 0, 

while the magnetic moment distribution and the eigenvalues of the wave 
vector are reduced to 

exp(2ikoL) = 1, k o  = z n / L ,  co = Tim [z2n 2 

me/* 
M(0 < x < a) = ~ - -  Jo cos(rcnx/L) 

(19) 

Comparison with Eq. (4) demonstrates that this case is equivalent to 
the macroscopic boundary condition (3) with A--* ~ .  This result is not 
unexpected since it is clear from the beginning that the simple reflection 
corresponds to the absence of the spin current through the boundary. This 
simplest case was discussed in such detail in order to skip lengthy calculations 
in analogous, but much more cumbersome and interesting situations. 

Eqs. (13) and (14) do not reflect boundary-induced spin diffusion 
because the right hand side of Eqs. (13) and (14) is non-zero only for the 
x-component of the spin current. A more general equation should include 
changes in the y, z- components of Ji. In a system with one preferred 
direction (x), this more general equation should contain two scattering 
parameters rather than one, vs ; 

- i (m/T) (~  + i/ r) J;+ ( O/Ox,)M (20) 

= -a*[e$(x) + 6 ( x -  L)](~ + i/v)2(m/T)2[(D'~- Ds)ntnkJk + DsJ,] 

where D' and Ds describe the wall-induced spin diffusion perpendicular and 
along the wall, and n is the unit vector normal to the wall. Due to a*, both 
D' and D~ have the usual dimensionality of spin diffusion coefficients. 

The non-zero value of D~ in Eq. (20) is associated with a non-specular 
(in a general sense) part of reflectons caused either by slip effects 6 

Ds ~ vl, 

(l is the particles' mean free path), or by a diffuseness of wall scattering, 

Ds=v( 

related to microscopic, ~a2/,~, or macroscopic, (~G(O)/R, inhomogenei- 
ties of the surface. Here G(y-y ' ,  z - z ' ) =  (u(y, z)u(y', z')) and R are the 
correlation function and radius of macroscopic inhomogeneities. 
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The form of coefficients in Eq. (20) corresponds to the diffusion spin 
current j and magnetization m in the boundary layer obeying the equations 

corn - q , j ,  = in,  J , ( 0 ) ,  ( 2 1 )  

( i / r  ..)],- (T/m)q,m = 0. (22) 

jk = ia*D.qkM(O) (23) 

In this particular case of simple diffusive (or slip) reflections, neither the 
exchange diffusion relaxation time within the boundary layer, v,, in Eq. (2), 
nor co in Eq. (2l), are important. 

The consequent procedure is completely analogous to the one described 
above. Now the integral (16) has the form 

f (k~[do JL exp(ikxL)] ia* dkx 2 
exp( ~ikx~ + 

2 z  k , : - k~  " 

+ [ J~ + J'a exp(ik~,L)] } (24) 

where J~ = qiJi(x = 0), J~ = qeJi(x = L). 
Direct integration leads to the equations analogous to (17), but with 

four, and not two, boundary values of the current J0,. and J~.L. Therefore 
one cannot simply use the boundary conditions (18) as above. One should 
rather derive an expression analogous to (16) and (24) for q~J~ from Eq. 
(20) and the first of Eqs. (15), calculate the corresponding integrals and use 
the conditions 

qiJi(x < O) = qiJ,(x > L) = 0 (25) 

supplementary to (18). Then one obtains a system of four homogeneous 
equations in four variables Jo.L, J~,L leading to the eigenspectrum of the type 
(4): 

exp(2ikoL) = (1 - i /Ako)2/(1 + i /Ako)  2 (26) 

if the parameter A for the effective boundary condition (3) is equal to 

A = i T / m  (27) 
q2a* D~(~ + i / r )  

On the other hand, Eqs. (21)-(23) result in 

A = - i [ ( T / m ) / a * D s ] / [ q 2 ( ~  + i /v )  - ikZ/vw] (28) 

which is equivalent to Eq. (27) if the internal wall relaxation time is much 
longer than the bulk one, v<< r~,. 



Spin-Polarized Gases in the Knudsen Regime 319 

In the hydrodynamic regime for the bulk, ~ r  << 1, Eq. (27) reduces to 

r (T /m)  D 
A(f~r << 1) = (29) a*q2D~ a*q2D~ 

D = r T / m  is the bulk transverse spin diffusion coefficient. Though the values 
of A (29) and ko (4), (26) are real, the frequency (2), (12) remains imaginary, 

co = - i~(  7" /m)(k  ~o + q~), (30) 

and surface scattering leads only to an additional dissipation. 
In the opposite spin-wave regime, f2r >> 1, the parameter A is imaginary, 

f iT/m) (31) A(f~r>> 1)= a.q2D~fl, 

and usually large, [AI >> 1. In this case the inclusion of boundary scattering 
also results in some broadening of the spin-wave resonances with 

co',, = -4co ,,q2 a* L D ~f2m / Tr2 n 2 T (32) 

(co, is the frequency shift for the nth resonance). This expression should be 
compared with a purely bulk width 

co"= -co/f~r. 

One should keep in mind that the eigenfrequency spectrum even in a 
rectangular 3D cell is rather complicated since eigenvectors k0 for different 
directions depend on each other because of the dependence of effective A in 
Eq. (27) on the components of the wave vector parallel to the wall, q. 

3. MORE GENERAL BOUNDARY CONDITIONS 

The next step is to allow some magnetic relaxation of particles on the 
walls as a result of either magnetic dipole processes or exchanges with bound- 
ary particles. Such a relaxation corresponds to the addition of the term 
--im/rsd with a characteristic time r,d into the r.h.s, of Eq. (21). 

These processes lead to a violation of the magnetic moment conserva- 
tion law (9), (15) which should be re-written as 

~ M - k i J i = - [ i a * ( M - M e ) / r * d ] [ 6 ( x ) + 6 ( x - L ) ]  (32) 
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with the renormalized relaxation time r*d = rsar,,(T/m)/Ds. The eigenspec- 
trum still has the form (26) with 

A = iT /m [r~*a -~ + q2Ds]- ' (33) 
a*(f~ + i / r )  

This equation is an adequate one for most of particular spin-wave problems 
in spin-polarized quantum gases. 

However, Eqs. (20) and (32) are not the most general ones. As soon as 
one allows the spin relaxation on the walls and the corresponding violation 
of the time-reversal symmetry, one should include all other possible terms 
with the boundary values of the spin current di and the transverse magnetiza- 
tion M into the r.h.s, of Eqs. (20) and (32): 

toM + i(~/Ox,)di = - ia*[8(x)  + 6 ( x -  L)][a ~ jM + a 12niJi], (34a) 

(£~ + i / r )J i+  i( T/m)(O/Oxi)M 

= -ia*[~(x) + ~ ( x -  L)][a21niM + (a22- a23)ninkJk + a23 &-]. (34b) 

where the meaning of all relaxation constants aik is quite clear. Then the 
spectrum obtains the form 

tan(k0L) = - ( 2 i k o a * T / m ) [ ( ~  + i / z ) (a l j  - a j2a21/a23 

+ a23q2T/m(I'2 + i / r )] /[ (T/m)2(k  2 -  (f2 + i/r)2a22/a~2 ) 

+ a*2{ [(~ + i~ r)(a i j - a j2a21/a22) 

+ a23q2T/m(f~ + i /v)}  2] (35) 

The comparison of Eq. (35) with macroscopic Eq. (4) demonstrates 
that the boundary condition may be reduced to Eq. (3) only if one of the 
off-diagonal terms in denominator, namely, 

(T/m)Z(f~ . 2 2 2 + t / r )  aj2/a22, (36) 

may be neglected. Then A reduces to 

A = -i[(f~ + i / r ) (a , ,  - a,2a21/a2z)m/T+ a23q2/(~ + fir)] -l (37) 

which is essentially the same as Eq. (33). 
These results show that the macroscopic description of spin dynamics 

of dilute spin-polarized quantum gases is incompatible in the Knudsen 
regime with strong spin non-conserving boundary scattering caused, for 
example, by magnetic dipole-dipole interaction. If the dipole interaction is 
rather weak, one is still able to take it into account using the macroscopic 
boundary condition (3) with the value of A given by Eq. (33) with long 
dipole relaxation time %d. 
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Other limitations on Eq. (3) arise when studying the integration of the 
Boltzmann equation leading to Eqs. (18) and (25). The transition from the 
3D equations of spin dynamics in the boundary "layer" to the 2D ones (21)- 
(23) is possible when the x-component of the wave vector in the layer, kb, 
is small, 

kba*, k2a* /ko<< 1 (38) 

meaning that A, 

fiT/m) 1 (39) 
A -  D~(f~ + i /z)  k~a*" 

should be rather large, Ak0>> 1, A/a*>> 1. This is true only if the surface 
depolarization and/or diffusion times Z~d and mDJT are much longer than 
the bulk relaxation time r, and the boundary condition on the "outer" side 
of the layer corresponds to the absence of spin current. These conditions are 
fulfilled if the density of surface imperfections is smaller than the density of 
the gas, and if the cell is made of non-magnetic material. As a result the 
meaning of the boundary parameters becomes rather straightforward, and 
their values can be easily estimated using the densities of different types of 
"imperfections" within the boundary "layer" of the thickness a*. 

4. A D S O R B E D  B O U N D A R Y  LAYERS 

The situation changes at low temperatures when an adsorption of part- 
icles may lead to a formation of boundary layers with a noticeable density 
/9: 

p = NA. exp(e0/T) (40) 

where e0 is the binding energy at the surface (1 K for hydrogen atoms and 
4He coating of the walls, 0.35 K in case of aHe coating, and 2 K for 3He 
particles adsorbed by a free surface of 3He-4He liquid mixtures), and 
)~,-,, 27r~/(mT) ~/2 is the de Brogile wavelength of the particles. This leads not 
only to some numerical renormalizations of the boundary constants, but 
also to some major changes caused by a very effective exchange between 
identical bulk and surface particles. The interaction with boundary layers 
(and with the walls--via boundary layers) makes the boundary processes 
different from the above ones. 

The adsorbed layers and the gas itself consist of the same identical 
particles. As a result, the exchange interaction between the bulk and bound- 
ary particles changes the effective molecular field ( frequency fl) at the boun- 
dary. This change and changes in relaxation parameters still may be 
incorporated into the above; formalism. 
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What is more, the strong exchange interaction between 3D and 2D 
particles makes the interaction with substrate more effective leading to an 
increase in relaxation rates (see comments in Ref. 7). 

Furthermore, the magnetic exchange interaction within the boundary 
layer may be responsible for a propagation of peculiar 2D diffusive (or spin- 
wave) spin modes along the walls. Now the boundary conditions should 
reflect a more complicated coupling of bulk and surface equations. However, 
one should avoid an effective increase in the order of the full set of differential 
equations of spin dynamics. The Leggett equations (1) for bulk spin dynam- 
ics were derived neglecting all higher order time derivatives (high order terms 
in o9) appearing after the momentum integrations of the bulk Boltzmann 
equation, and it would be beyond the accuracy to include higher-order time 
derivatives appearing as a result of boundary interactions. One should con- 
sider only the equilibrium (static) boundary coupling in the form of Eq. (23) 
restricting oneself to low-frequency spin oscillations (the lowest standing 
modes). 

Boundary equations of spin dynamics (21)-(23) should be modified. 
Without the time derivatives and long dipole processes, the surface magnetic 
moment conservation law (21) assumes the form 

Om/t~t + div j = niJi-  (m - me)/Z'~a (41) 

where the transverse components of the equilibrium surface density of the 
magnetic moment, me, are usually equal to zero. Eq. (41) should be supple- 
mented by a modified equation (22) for a surface spin current, j, 

(~., + i/r,,) j~- (T/m)qim = 0 (42) 

where f~,.,-, ah(p/m)(a/Z) is the molecular field frequency for the 2D bound- 
ary layers with the spin polarization a, and, in contrast to Eq. (41), the 
symmetry dictates the zero right hand side. If the dipole interaction is very 
strong and the time-reversal symmetry is broken, then one should add terms 
with M and Jr into the right hand sides of Eqs. (41) and (42) in the same 
manner as in Eqs. (34). This would complicate all the equations, but would 
not bring into being any new effects. 

The constants in Eqs. (41) and (42) can be reduced to the coefficients 
of the type (20) and (32). Here again the 2D layer can be modeled as a ~- 
type singularity (boundary condition) with some effective width a* which is 
of the order a* ~ X << a (now the thickness of a layer, a* (23), is of the atomic 
size only in case of very deep boundary layers). The boundary condition 
again assumes the macroscopic form (3) with the coefficient A 

A(r~a ~ 0o) = - i T / m  [q2_ (f~,, + i/rw)~O(m/T)] -~ (43) 
a*D~(f~ + i/r) 
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Because of the high density of surface layers, the surface molecular field 
D., and the frequency of collisions, 1/~-~,, are large in comparison with their 
bulk counterparts. Therefore, one should neglect in Eq. (43), in contrast to 
Eq. (28), the term with q2 : 

A = i (T /ma*D~)k-2 / ( f~ , ,  + i/~w) (44) 

Both, f ~ w ~ a f i ( p / m ) ( a / ) . )  and 1 / r w ~ p o a 2 / A ,  are proportional to the 
density of the adsorbed boundary layers, p, and increase exponentially with 
temperature, Eq. (40). As a result, the formation of the boundary layers 
leads to an exponential (in temperature) decrease in IAI. In a spin-wave 
regime for the boundary layers, Dwrw<< l, the value of A is imaginary, 

h = iT/ma*D~k2f~,,, (45) 

meaning that in case of a rectangular cell, Eq. (26), the formation of dense 
boundary layers results mostly in some shifts of spin-wave resonances but 
with a very noticeable change in width (cf. Eq. (32)): 

CO ~ = - 4 c o , L ( m /  T)a* D,k2~w/  Ir2n 2 (46) 

In the opposite case of insignificant coherent interaction within the 
boundary layers, the value of A is real, 

A = rwT/ma*D~k 2, (47) 

and major effect in the bulk spin-wave regime f~l-<< 1 is a shift of resonances 

8 o9 ~ = -4co , L  / A Tr2 n 2 (48) 

while the attenuation is associated mostly with the bulk processes. 
The comparison with the experimental data 2 of the Cornell group (expo- 

nential increase in linewidths with a proper exponent (40), and lack of large 
frequency shifts) allows one to conclude that the experimental conditions 
correspond to the formation of dense boundary layers with the internal 
collision rate much higher than in the bulk, and with a large coherent part 
of the interaction within the layers, fl~,. The increase in linewidths was 
related to a strong surface molecular field (46) and was caused not by some 
additional surface dissipation, but by the dephasing associated with changes 
in precession frequencies near the boundary. The lack of noticeable fre- 
quency shifts indicates that the value of A was still large. 

The available information is insufficient to make a conclusion on the 
existence of surface spin modes 8 in experimental conditions 2 though the 
strong molecular field is a definite indication towards this possibility. 

Boundary conditions for solid helium layers on cell walls 9 differ from 
the above case of adsorbed layers for a hydrogen gas or 3He-4He mixtures. 
The major difference is a much lower (by three orders of magnitude) 
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exchange rate in solid layers making the molecular field f~., and diffusion 
rate 1/rw (43), much smaller, and often negligible. Another factor is a smaller 
exchange rate between bulk and surface particles resulting in smaller D, a 
larger A. 

Some preliminary results have already been published earlier) ° 
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