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Pressure diffusion and related phenomena are studied in the cases of Fermi 
liquids and dilute gases with arbitrary degree of quantum degeneracy. An 
equation is derived expressing the (spin)pressure diffusion ratio through partial 
viscosities of (spin) components of systems. The exact values of corresponding 
transport coefficients are given for the cases of spin-polarized Boltzmann or 
degenerate quantum gases and spin-polarized Fermi liquids. The influence of 
surface slip effects on diffusion properties of spin-polarized quantum systems 
is discussed. The results may be used for gaseous and liquid 3He, 3He t -4He 
solutions, gases H ~ and D ~ , and other spin-polarized or binary quantum 
systems. 

1. INTRODUCTION 

The most striking manifestations of macroscopic quantum effects in 
spin-polarized quantum gases and liquids are connected with polarization 
peculiarities of transport and other kinetic phenomena (for reviews see ref. 
1). The polarization of spin systems leads not only to a considerable change 
of the usual transport coefficients (viscosity ~7, thermal conductivity x, and 
spin diffusion D2), but also to the existence of additional transport 
coefficients [spin thermal diffusion, spin pressure diffusion, spin second 
(bulk) viscosity]. The reason is that if we are interested only in processes 
not accompanied by the rotation of magnetization (i.e., of the spin polariza- 
tion vector), then a spin-polarized system is macroscopically formally 
equivalent to a mixture of several subsystems corresponding to particles 
(or quasiparticles) with different values of spin projection. In this case a 
polarized system of particles with spin S must be characterized by the same 
set of kinetic coefficients as a usual (2S+ 1)-component mixture of gases 
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or liquids. The calculations of corresponding transport coefficients for 
spin-polarized systems may be performed using the well-developed methods 
and formulas for kinetic calculations in many-component mixtures (such 
an approach to transport phenomena in spin-polarized gases and Fermi 
liquids is somewhat analogous to the Wang Chang and Uhlenbeck approach 
to the kinetics of gases of molecules with complicated internal energy 
spectra). 

Certainly the simplest and most realistic case corresponds to systems 
of spin-½ fermions, for which the polarization causes the system to become 
similar to some binary mixture (of spin-up and spin-down components). 
The diffusion properties of such a system are governed by an equation 
analogous to the diffusion equation 2 for binary mixtures, while the role of 
concentration of a dissolved component is played by the degree of spin 
polarization) If the magnetic interaction of (quasi) particles is mostly of 
exchange origin (as in the case of 3He systems), then the diffusion processes 
mainly conserve the number of particles in each of the spin components. 

The diffusion of the magnetic moment (without a change of its direc- 
tion!) in a spin-polarized liquid or gaseous system of spin-½ fermions can 
be characterized using the analogy with usual binary mixtures by three 
diffusion coefficients: the spin diffusion coefficient D~, the spin thermal 
diffusion coefficient Dsr, and the spin pressure diffusion coefficient D~p. In 
this case the spin diffusion current is proportional to the gradients of the 
spin polarization a (the analog of component concentration in binary 
mixtures), pressure P, and temperature: 

js = -D2N[Va + (Ksp/ P)V P + (KsT/ T) V T] (1) 

where we introduce dimensionless spin pressure and thermal diffusion ratios 
Kst,=--PDsp/DsN and KsT=-- TDsT/DsN (N is the number of fermions per 
unit volume). 

Usually the pressure diffusion ratio is calculated according to simple 
thermodynamic relations2; in our case this means that 

Ksp=-P 5P[ O~p (p~+~++ ~__/~ )]-'p. T'~ P =N[m+(l+a)+m_( 1 -a)] (2) 

where /z± and m± are the chemical potentials and (effective) masses of 
(quasi) particles with spin projections +½. Corresponding results for spin- 
polarized quantum gases and Fermi liquids have been obtained. 3 However, 
it has been known for a long time 4 that a viscous flow of a liquid or gaseous 
mixture leads to a considerable renormalization of the pressure diffusion 
coefficient (2). Such a renormalization is caused by the necessity of taking 
into account the second spatial derivatives of the overall mass velocity of 



Spin-Polarized Quantum Systems 463 

a liquid or a gas in the expression for a diffusion current: according to the 
Navier-Stokes equation, the second derivatives of the total mass velocity 
u are proportional to the first spatial derivatives of  pressure; in a stationary 
viscous flow Au = (1/r/)VP. 

In our ease such a renormalization is extremely important, 1 especially 
fo r a nondegenerate (Boltzmann) spin-polarized quantum gas, since in this 
gas the value of  pressure diffusion ratio (2) without viscous renormalization 
is equal to zero, reflecting the absence of  pressure diffusion in a mixture of  
ideal Boltzmann gases of  particles with equal masses (see below). 

In this paper we present the results of calculations of (spin) pressure 
diffusion coefficients for different spin-polarized systems of spin-~ fermions, 
including the viscous renormalization. In the next section we derive a simple 
expression for K~p generalizing the results of ref. 4 so to incorporate binary 
systems with arbitrary degrees of  quantum degeneracy of distribution func- 
tions. This expression is used for evaluation of Ksv in dilute spin-polarized 
degenerate and Boltzmann gases (Section 3) and in polarized Fermi liquids 
(Section 4). Since the general expression for Ksp obtained in Section 2 
relates the pressure diffusion ratio Ksp tO the partial viscosities z± of  the 
spin components, one must determine the values of ~7± and corresponding 
relaxation times ~-± in order to evaluate Ksp. These values of  ,/± and ~-± are 
important not only for the pressure diffusion, but also for the problems 
connected with sound absorption at not very low frequencies and with other 
high-frequency phenomena. 

The pressure diffusion coefficient calculated in Sections 2-4 determines 
the local relation between the density of diffusion (spin) current and the 
pressure gradient in the volume of bulk systems. However, it is well known 
that slip effects at the walls lead to the appearance of large diffusion flows 
in the boundary layers of a gas in the presence of  temperature or pressure 
gradients. Therefore, if one is interested in the relation between the total 
diffusion flow in some tube and the difference of pressures at the ends of 
this tube, one must take into account not only the bulk pressure diffusion 
currents, but also the surface contribution of  the Knudsen boundary layer 
with the thickness of  the order of  the (quasi) particle mean free path (Section 
5). 

We are interested mainly in low-temperature 3He 1'-4He solutions 
(where, depending on 3He concentration, the 3He impurity system may 
represent either a dilute gas of fermions with an arbitrary degree of  quantum 
degeneracy or a comparatively dense Fermi liquid) and in a pure, normal 
3He t Fermi liquid. Some of  the results may be used also for gases of 
atomic H t or D t if, as in usual experimental conditions, only two 
hyperfine components must be taken into account. Certainly the results may 
be used for other binary mixtures of  gases or Fermi liquids. 
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2. P R E S S U R E  D I F F U S I O N  IN B I N A R Y  M I X T U R E S  

The value of the pressure diffusion coefficient for the stationary viscous 
flow of a binary mixture of classic (Boltzmann) ideal gases was calculated 
in ref. 4. It is necessary to generalize the results of ref. 4 in two directions. 
First, for quantum systems one must have an expression for Ksp valid at 
different degrees of quantum degeneracy, including completely degenerate 
Fermi gases. Moreover, since the description of Fermi liquids is based on 
the gaseous representation for the quasiparticle system, the corresponding 
expression for Ksp must include also the case of a degenerate, dense Fermi 
liquid. Second, the derivation of expressions for K w in ref. 4 was to a large 
extent based on a 13-moments Grad expansion. This is a serious limitation 
of the results, for the Grad method is certainly not the only one for 
calculating the transport coefficients even for a mixture of Boltzmann gases. 
For this reason it may be useful to derive some general expressions for Ksp 
without making concrete the method of solving the kinetic equation. 

Let us begin with the case of a dilute spin-polarized gas of spin-½ (quasi) 
particles with quadratic energy spectrum e(p) at an arbitrary degree of the 
quantum degeneracy of the distribution functions for up and down spins. 
The kinetic equation for the diagonal-in-spin components n± of the single- 
particle density matrix r~ has the form 

On~ oe~ On± Oe~: One_ St±(n+, n_) (3) 
Ot Op or Or Op 

where the indices (+) and ( - )  determine the spin components of the system. 
Although in a dilute gas the (effective) mass of (quasi) particles does not 
depend on the sign of the spin projection, for the sake of consequent 
generalizations to the cases of Fermi liquid or binary mixtures of gases of 
particles with different masses it may be convenient to introduce formally 
different (effective) masses m± for particles with up and down spins and 
to use the equality m+= m_ only in the final expressions for pressure 
diffusion in very dilute spin-polarized gases. 

The kinetic equations (2) can be transformed in a standard manner 
following, for example, refs. 4 and 5. The mean (mass) velocity of the 
particles is 

u = (re+N++ m_N_)-t  f (m+n+v++ m_n_v_) dF, 
J 

where 

N~ = f n± dF, N + + N _ = N  

dF = d3p/(2~rh) 3 

(4) 
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are the numbers of (quasi) particles with up and down spins per unit volume. 
Multiplying Eqs. (2) by m±(v±- u) and integrating over momenta, one can 
easily obtain the equation 

d J± J~ ou+5_J:~au+ ~j~ + . ~ + o P ~  +aI I±=  f~± 
Or 3 Or a t  Or Or (5) dt 

with the notations 

J± = rn± J n±(v±-u) dF 

P± =~m± I (v±-u)En± dF 

=-- e+k = au,/ ark +auk~at, -~a,k au,/ art 

=--- II±ik = m± f n±[(v:~ -- U),(V~--U)k -- 6ik(V± --U)2/3] d r  

f~± = m± f dF (v±-u)St± 

d /  dt =- O/at +u O/Or 

After linearization and the usual simplifying assumptions including the 
momentum conservation law 

( m+ N+ + m_ N_ ) d u~ dt + aP/Or + aI-l/Or = 0 (6) 

Eq. (4) reduces to 

oP± m±N~ (OP+OII~ +OH± -(~± (7) 
ar m+N+ + m_N_ \-~r -~r / Or = 

where theflressure is P = P+ + P_ and the viscous stress tensor has the form 
II = l~l+ + H_. For isotropic viscous systems one can always introduce "par- 
tial (spin) viscosities" ~7~ so that 

+ H=+- = - n ± ~  (8) 

while the total viscosity is 7/-= ~7+ + ~/-. In the case of a stationary viscous 
motion it is possible to neglect the term with d u / d t  in (6), 

aP/ar + afI/ar = 0 (9) 

As a result, Eq. (7) with the help of Eqs. (8) and (9) take the very simple form 

aP±/ar -  (rl , /rl)  aP/ar = -f~± (10) 
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We are not interested in thermodiffusion, and can regard the tem- 
perature as constant, T = const. Then direct calculations show the validity 
of the following identity for the quantities P± of (5): 

dP±= N± dtx± 

In the usual approach to diffusion problems (without viscous renormaliza- 
tion) the diffusion coefficients and diffusion currents in binary gas mixtures 
are determined [instead of Eqs. (10)] from the kinetic equation 

N±Otx±/Or-[m±N±/(m+N++m_N_)]OP/Or=-f~± (11) 

[the quantities f ~  still have the form (5)] with an additional condition 
j+ +j_ = 0 necessary due to the degeneracy of the system of two equations 
(11). Comparison of Eq. (10) and (11) together with the identity for dP~ 
immediately leads to the possibility of representing the diffusion current at 
T = const in the form 

j _ = j + _ j  = c o n s t × [ 0 ~ ( t x +  /z__~_)_( r/__++~+ j~_N_)10__p] 
m+ 7/ or 

Comparing this with Eq. (1) brings one the final expression for the (spin) 
pressure diffusion ratio: 

× --~+\Oa/p,7--rn---~_ ~ e,r 

rl+/ m+N+ - ~-/ m-N- ] 
~7 

(12) 

where ~ - (N+ - ?4_ ) / N  is the degree of spin polarization (or the concentra- 
tion of a binary mixture). 

Equation (12) means that for dilute gases with an arbitrary degree of 
quantum degeneracy the evaluation of the (spin) pressure diffusion ratio 
reduces to the calculation of partial viscosities and thermodynamic deriva- 
tives of chemical potentials for different (spin) components of a gas. In 
different cases one can use different adequate methods of calculating rt~ 
(e.g., Chapman-Enskog method, Grad expansion, etc.) depending on the 
peculiarities of the problem in question. The accuracy of calculations using 
Eq. (12) increases with decreasing temperature due to the existence of exact 
methods of solving the kinetic equation and evaluating kinetic coefficients 
for degenerate gases in contrast to Boltzmann ones. 

The derivation of the expression for the (spin) pressure diffusion ratio 
in a polarized dense Fermi liquid does not differ considerably from the 
above one for gases. In this case the starting kinetic equation still has the 
form (3) and after not very cumbersome calculations it is possible to 
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reproduce formally Eqs. (10) and (12). Note that the Fermi liquid function 
in a dense Fermi liquid enters the expression for Ksp in (12) explicitly only 
through the thermodynamic derivatives of chemical potentials. 

3. PRESSURE DIFFUSION AND SOUND ABSORPTION IN 
POLARIZED QUANTUM GASES. 
DILUTE 3He 1' -4He SOLUTIONS 

There are several very well-developed procedures for the evaluation 
of kinetic coefficients in different types of dilute gases. Therefore the calcula- 
tion of the (spin) pressure diffusion ratio (12) may present technical difficul- 
ties rather than fundamental ones for dilute gases: one has only to apply 
some appropriate well-established scheme of  calculation of partial vis- 
cosities for binary gas mixtures and obtain the values of  7±. 

In our particular cases of  spin-polarized quantum systems there are 
dilute systems of special interest, the so-called "quantum gases"1: gases of 
(quasi) particles with de Broglie wavelength A comparable to the atomic 
dimension ao or even larger than ao. One of the most important types of 
such a gas is a gas of 3He impurity quasiparticles in liquid 3He-aHe solutions 
at low temperatures and low 3He concentrations) One can experimentally 
investigate this gas of 3He impurities practically at all degrees of  spin 
polarization and quantum degeneracy from the Boltzmann region T >> To 
down to the completely degenerate state T<< To [ To = h2(3~r2N)2/a/2M is 
the Fermi temperature, N is the number of  3He atoms per unit volume of 
the solution, and M is the 3He quasiparticle effective mass; at saturated 
vapor pressure M ~ 2.3m3 and To ~ 2.6x 2/3 K, where m3 is the 3He atomic 
mass and x stands for the 3He concentration in the solution]. For such a 
system it is rather easy to get into the quantum region A~> ao in both 
degenerate T<< To and Boltzmann (and also in intermediate) cases. The 
condition A ~ ao corresponds to the inequalities 

T, To <<- h2/2Mao 

with the quantity on the right-hand side of the order of 1 K. Therefore the 
system of  3He quasiparticles in 3He-aHe liquid solutions represents an 
example of  a quantum gas, A>~ a0, at temperatures lower than 0.3 K and 
3He concentrations below 1%. Note that in spin-polarized dilute 3He ~ -4He 
solutions the effective masses of quasiparticles with up and down spins are 
equal to each other, m+ = m_ = M, in the main order in 3He concentration. 

All kinetic calculations and results simplify significantly in the 
ultraquantum limit I A >> ao when the (quasi) particle interaction reduces 
mainly to s-wave scattering with amplitude ( - a )  independent of momenta 
(in this sense kinetic calculations for ultraquantum gases are analogous to 
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those in the hard spheres model). Moreover, in the case of a gas of fermions 
an additional simplification arises as a result of the quantum identity of 
(quasi) particles, meaning the effectiveness of only the collisions of particles 
from different spin components for the s-wave scattering. 

The thermodynamic derivatives in Eq. (12) become trivial for ideal 
spin-polarized Boltzmann gases, T>> To, and Ksp in (12) takes the form 

Ksp = 2( N+N_/  rlN)( ~7_/ N_ - ~7+/ N+ ) (13) 

while the value of Ksp in (12) at mr = m_ = M is equal to zero. The partial 
viscosities ~7± in Eq. (13) may be determined by Chapman-Enskog or Grad 
expansions (see, e.g., refs. 4 and 5), using standard formulas for binary 
mixtures of classical gases. For example, if we are interested in quantum 
gases, A >> ao, then, according to the data of refs. 1, 3, 4, and 6, 

r/±/-q = (2N±2 + ~N+N_I )/(2N+2 + 2N 2_ + N+ N_ ) 
(14) 

- ) / ( 2 N + + 2 N _ + N + N _ )  K w = 3 ( N + N _ / N ) ( N _  N+ 2 2 

For degenerate, T<< To, spin-polarized gases direct thermodynamic 
calculation of Ksp in (12) yields [cf. (13)] 

( 1 + a ) S / 3 + ( 1 - a ) 5 / 3  (15t 
Ksv = [ ~ _ ( l + a ) 5 / 3 - r l + ( 1 - a )  5/3] (1 + a)2/3+ (1 - a )  2/3 

with a =- ( N÷ - N_ )/  ( N÷ + N_ ). Note that the evaluation of thermodynamic 
derivatives in (12) for a degenerate, nearly ideal gas in the main order in 
the concentration almost always means the necessity of consequent kinetic 
calculations in the ultraquantum limit A >> ao, since the corrections in ao/A 
have the same order of magnitude as already neglected thermodynamic 
contributions of the order N 1/3. For the Boltzmann gases treated above this 
is not so, and the smallness of concentration Na3o<< 1 and of the quantum 
parameter ao/A represents two different expansion parameters [in the 
Boltzmann case A -  h~ (MT)1/2, while for degenerate gases A ~ N-t/3]. The 
values of partial viscosities of a degenerate polarized quantum gas may be 
determined according to the calculations and results of refs. 1, 3, and 7. 
Straightforward calculations result in 

25/3(3~2N)5/3h5 C(A+ ) 6d 4 
3(2zr)3aZM2T 2 d3( l+d3)5 /3(5-3d2  )' h + = l - 2 d 2 + - ~  - 71+ - 

22/3(3~r2N)S/3h 5 dsC(h_) 1 (N_~ 1/3 
r l - -  3(2~)3a2M2T2 (1q_d3)5/3, h_=~,  d = - \ ~ + ,  I (16) 

1 -A  ~ 4 v + 3  
C()t) =---~- v=o (~,+ 1)(2u+ 1)[(u+ 1)(2~,+ 1 ) -  hi  

r/+ r/_ 2C(A+ ) 
- - 1  

n n + ( s a s - 3 a ' ° ) c ( x - )  
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Equations (15) and (16) give the value of the (spin) pressure diffusion 
coefficient for the viscous flow of  a degenerate quantum gas. This result 
differs considerably from the result of purely thermodynamic calculations 1,3 
using Eq. (2), 

(3/20)(1 - d E) u3[ (1  q- or) 5/3 q- (1 - a )  5/3][(1 q- a )  2/3 - (1 - a )  2/3] 

The transport calculations of refs. 8 and 9 make it possible to calculate 
the pressure diffusion ratio (12) also for the intermediate (between 
Boltzmann and degenerate) temperatures in quantum gases. It is also poss- 
ible to obtain the pressure diffusion ratio for semidegenerate gases l'a°--gases 
with degenerate spin-up component and nondegenerate spin-down com- 
ponent. However, in the latter case the value of  Ksp is certainly small due 
to the smallness of  N_/N << 1 and 7/_/71+ ~ 7/-/7/<< 1. 

The partial viscosities ,/± have more than only an auxiliary meaning 
and are important for various phenomena distinct from pressure diffusion. 
For example, partial viscosities of  spin components can be measured 
independently of each other in some high-frequency phenomena when the 
parameters tar may be different for both components due to the difference 
in characteristic relaxation times r± for up and down spins. One such 
phenomenon is the absorption and frequency dispersion of sound at finite 
frequencies (it is well known 2 that at low frequencies the absorption of 
sound depends only on total viscosity 7). The most characteristic example 
is given by 3He-4He solutions at low temperatures and 3He concentrations 
when the first-sound waves are mainly the oscillations of superfluid He II. 
The 3He quasiparticles also participate in these oscillations and their 
influence is insignificant, since the sound velocity dominates in the sound 
absorption at low temperatures. To some extent the first-sound wave in 
dilute 3He-4He solutions represents an oscillating external field for 3He 
quasiparticles. The attenuation of these sound waves is rather small in the 
hydrodynamic (tar<< 1) and high-frequency (tot >> 1) limits due to the small- 
ness of 3He concentration (the latter limit in helium corresponds to so-called 
high-frequency first sound). The spin polarization of solutions leads 1,3 to 
the splitting of the first-sound absorption maximum at frequency tar = 1 
into two maxima at frequencies tar+ -- 1 and tar_ = 1, while the expression 
for the sound absorption coefficient differs from its usual hydrodynamic 
value 2 by the substitution 

+ t a r + ) +  7/_/(l+ta2r2_) (17) */-~ */+/(1 2 2 

instead of  the viscosity 77- Evidently one of  the maxima (on the frequency 
to = l / r + )  moves to vanishingly low frequencies and increases in value, 
while the second one decrease with increasing polarization. In dilute degen- 
erate solutions the relaxation times r± are related to the partial viscosities 
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n± in (16) as 

.c± = 5Mrl±/N±p~, p± = h(6,rr2N± )1/3 (18) 

while in the Boltzmann region (14), % = ~7±/N± T. A nearly complete polariz- 
ation a --> 1 means for quantum gases (14), (16) that ~+, ~-+--> oo, ~_-> 0, and 
r_ remains finite, thus determining the asymptotics of sound absorption at 
O~ ""> 1. 

4. PRESSURE DIFFUSION AND S O U N D  IN POLARIZED FERMI 
LIQUID. CONCENTRATED 3He ~-4He SOLUTIONS AND 

NORMAL PURE LIQUID aHe 1' 

The evaluation of Ksp still must be carried out using Eq. (12). However, 
the results turn out to be much more complicated in the case of dense, 
spin-polarized Fermi liquids like pure liquid 3He 1' or 3He ~' - 4 H e  solutions 
with high 3He concentration (about several percent) than for the above 
cases of dilute gases. For example, the thermodynamic derivatives in Eq. 
(12), determined in accordance with the thermodynamic formulas of refs. 
1 and 3 for polarized Fermi liquids, take the form 

(l+ Ol~+ 10p_.~_fi_) 
OP m_ ,, 

(o) 1 N+m_p_(A+ m_-B~)m+)-N_m+p+(A~)m+-B!°)m_) 
re+m_ N+m_p_(A~)N+ + B~)N_ ) + N_m+p+(A~ ) N_ + B~)N+ ) 

(19) 
{ 1 0/.~+ 1 '~ 0/z_ 

km+ aa m_ o-~aJe 
7T21tI3N 2 (A~)A~)-  B~)B(_°))( N+m+ + N_m_ ) 

m 

re+m_ N+m p_(A(+°)N++ B~)N_)+ N_m+p+(A~)N_+ B~)N+) 

where the harmonics of the Fermi liquid function f(p,  O; p', O') for the 
general case of a Fermi liquid with purely exchange interactions 

f(p,  O; p', 6-') = ~,,(p, p') ~flf' + 02(P, p')O6"+ e{03(p, p')O~f' 

+ 03(P', P)-fO'} + 04(P, p')(eO)(eO') 

are defined by the relations 

~ / . )  (n+½) pbmb [ 
iab = 2 2h 3 j Oi(p~,p'b)Pn(cosx)d cos X 

B ( . )  ~it(n) _ l i t ( n )  q_l l t (a)  2/: l i t  (n) _ l i t  (n) 
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Above, ~ are the Pauli matrices, . l -  6~ is the unitary spin operator, e is 
the unit vector along the direction of polarization, the indices a and b take 
the values (+) or ( - ) ,  P, are Legendre polynomials, and m± and p± are 
respectively the effective masses and Fermi momenta for quasiparticles with 
up and down spins. The values of effective masses rn+ # m_ are related to 
the masses of bare (quasi) particles by the first harmonics of the f function 

The values of partial viscosities ~7~ for (spin) components of a polarized 
(or binary) Fermi liquid may be obtained using the methods developed in 
refs. 1, 3, and 11: 

2 h3p_p4+ 1 [S:~+6(m___~2p+p2 YS] 
"0±- 15 T2m 4 Z± \mT/ p3 

z±=p._2.+/ W± [rn~:\2 W_f~) 
p~ t4  cos(0/2)+tm-£)  

(2)  °° ( 4 v - l ) v ( 2 v - 1 ) - l + A = ~  

(W'  (~p) 1 ( 2 ) ] )  P- sin 2 0 sin 2 [cos sinE0 sin 2 (20) Y=  ~ 3 p +  -~ O + f - ~ _  

1 _~ 4 v - 1  1 
S=4 v=IE v(2v-1)  y, 

y = [ v ( 2 v _ l ) _ a + A + ; A - ] 2 q  ( A + - A - )  2 36Y 2 
4 Z+Z_ 

A±=6x± (m:~')2 (~-£) 2 
- -  Z21 

kin±~ 

f±=  1+ +2P±cos  0 
p:~ 

X±=(sin2Osin2(~/2)[(sin2Osin2(~/2)~ 
f3_ W' 1 ~ f± ] 

W± (m--2-~) 2 p3+ f3_ sin20 cos2(~/2) l \  
\m. l  p~ 22/3(1+~0s0-~ J /  

where (. • -) means averaging over the angles, W÷(O, ~) is the phenomeno- 
logical scattering probability of spin-up quasiparticles on the Fermi sphere 
of radius p÷, W_ is the probability of mutual scattering of spin-down 
quasiparticles, and W' is the probability of scattering for quasiparticles 
with different spin projections. 
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The partial viscosities ~7± in (20) also determine the dispersion and 
attenuation of  first sound in spin-polarized concentrated 3He ~ -4He solu- 
tions at high frequencies [Eq. (17)]. In dense Fermi liquids the relaxation 
times for different components  z± are related to their partial viscosities by 
z± = 5m±~±/N±p~ instead of  Eq. (18). 

5. BOUNDARY C O N D I T I O N S  AND TOTAL D I F F U S I O N  
CURRENTS IN P O L A R I Z E D  SYSTEMS 

Slip effects at boundary  surfaces for liquids or gases are well-known 
causes 12 of  peculiar surface heat flows and (for mult icomponent  systems) 
diffusion currents. Since the contributions of  the surface heat and diffusion 
flows to the total heat and diffusion flows through a tube are of  the same 
order in a ratio of  a mean free path to a characteristic dimension as 
contributions of  first Burnett terms for bulk flows, one must always take 
into account in calculating overall diffusion and heat flows both bulk and 
surface contributions. This also must be done for pressure diffusion 
problems.* 

In our case T = const the boundary condition on the mass velocity of  
a gas near some solid surface has the form 12 

u t ( z  = 0 )  = a n  Ou,/Ozlz=o+ a~2 Vt/zlz=o (21) 

where Vl~=(1 /m+)V t z+- (1 /m_)V t z_ ,  the index t denotes the com- 
ponents of  vectors along the surface determined by the equation z = 0, and 
the coefficients aik correspond to slip effects near the solid boundary surface 
[in the absence of slip the boundary condition has the simple form ut(z = 
0) = 0]. The values of  aig are of  the order of  

¢~12  ~ 1/c (22) 

where 1 is the mean free path of  (quasi) particles and c is the sound velocity. 
The nonzero mass velocity near the surface (21) means the existence of 
specific surface diffusion currents ~2 

j~o) = o~21 Out/Ot]z=o+ a22 ~Tt]~[z=O (23) 

The problem of  calculating the total (pressure) diffusion current 
through a tube or flow channel must be dealt with in the following manner.  
First one has to express the distribution of overall mass velocity over some 
cross section of  a tube u(r) through the spatial gradients of  pressure V P  

*The necessity of taking into account simultaneously surface and bulk terms for pressure 
diffusion in mixtures of usual Boltzmann gases is already known (see, e.g., refs. 13 and 
references therein). The results below are based on those communicated to use by A. M. 
Bishaev, V. S. Galkin, and V. A. Rikov. 
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and chemical potential ( l /m+)Vt~+-(1/m_)V/x_.  This must be done by 
solving the Navier-Stokes equation with the boundary condition (21) 
without taking into account any additional Burnett corrections to the 
equation; all such corrections result in higher order terms in the mean free 
path L Then, with the help of Eqs. (1) and (12) one calculates the distribution 
of the density of the bulk diffusion current. This distribution has to be 
integrated over the chosen cross section of the tube and added to the surface 
diffusion current (23) integrated over the perimeter of this cross section. 
As a result one obtains a linear dependence of the total diffusion current 
Io through the cross section of the tube on the gradients of pressure and 
chemical potential or concentration (spin polarization). The corresponding 
coefficients include the coefficients of (spin) diffusion, viscosity, (spin) 
pressure diffusion, and the set of surface coefficients aik in (21)-(23). 
However, some of these coefficients are related to each other by the Onsager 
principle of the symmetry of kinetic coefficients. 

Let us illustrate the above procedure on the simplest example, Consider 
two large volumes of gas at different pressures P1 and /92 (P1-P2  << Pl,2) 
connected with a tube of radius R (x axis). The temperature is supposed 
to be constant throughout the system. The velocity of the gas is governed 
by a stationary Navier-Stokes equation with the boundary condition (21) 
and is distributed over the cross section of the tube according to the quadratic 
Poiseuille law: 

ux(r) = - - ~  (R 2 - r 2 -  2Raal )dG+  °tl2 " d x x d P  dtx (24) 

(the pressure and the chemical potential depend only on x, but not on r). 
The total diffusion current through this cross section is determined by the 
bulk current [see (1) and (12)], js and the surface diffusion current j~o) [see 
(23)]: 

\2r /  Rdxx +ce22 

P,T ~ 

The entropy production in this case is given by 

dux [ dux\ 1 [IDdtX+flIx~-~r = S= TI_ dx --- 27rrdr+2"n'Rrl~Ux--~r )r RI (26) 

where the component of stress tensor II~r = ~/du~/dr. It is convenient to 
substitute dux/dr in Eq. (26) by dP/dx using Eq. (24): 

__' {iod.+a [ f '~= T -~X -~xL~.J r2II~rdr+vrRaux(r=R)]} (27) 
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In order to use the Onsager principle, 12 let us choose as thermodynamic 
forces the quantities 

X1 = dlz /dx,  X2 = d P / d x  (28) 

Then Eq. (27) dictates the following choice of thermodynamic velocities: 

2~=-~ XZ-rIT" - - -  r2IIxr d r + ~ u x ( r  = R ) R  2 (29) 

so that the entropy production (27) is equal to the sum 2~Xi. The coefficients 
Yik in the linear relations 2~ = 7~kXk are determined by the expressions for 
IIxr, Io [Eq. (25)], and ux [Eq. (24)]. According to the Onsager principle, 
y12 = Y2~, implying the equality 

0/21 = r lal2-  NDs(Otx/O0/) ~,,~r('o+/ N + m + - r l - /  N - m -  ) (30) 

Equation (30) does not depend on the geometry of a flow channel. The 
above results must be generalized for the case of nonconstant temperature. 
In this case the boundary conditions must be supplemented by the slip term 

0/13 v,rlz=o 

in Eq. (21), an additional surface diffusion current 

0/23 V,Tlz=o 

in Eq. (23), and by the equation for surface heat flow 

q~0)= O/31 OUt/ OZlz=O + 0132 Vt~.£lz=O+ 0/33 VtTlz=o 

One must also take into account the expression for the bulk heat flow q in 
binary mixtures 2 and corresponding expressions for the entropy production. 
Then it is easy to reproduce the scheme (24)-(30) and to obtain Onsager 
relations of  the type (30) for all nondiagonal coefficients of the 3 x 3 matrices 
Ylk = Yk~ and a~k. 

Generally in flow problems in polarized systems there are three possible 
flows (mass flow, spin diffusion current, and heat flow) caused by three 
driving forces (temperature, pressure, and polarization gradients). The 3 x 3 
matrix of  transport coefficients connecting total flows with thermodynamic 
forces involves both bulk and surface coefficients. By supplementing the 
information on transport coefficients from refs. I with the above calculations 
of the pressure diffusion coefficient, it is possible to evaluate all bulk 
contributions for spin-polarized gases and Fermi liquids. Unfortunately, 
there are no calculations of surface slip coefficients for polarized quantum 
gases and liquids. In principle, the surface slip for polarized quantum 
systems may be estimated in the same manner as for nonpolarized ones. ~4 
This estimate is simplified by the nearly specular character of surface 
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scattering for (quasi) particles in a low-temperature quantum system. 
Moreover, the surface scattering in a Boltzmann quantum gas does not 
depend on the (quasi) particle spins; such a dependence is exhibited only 
as a result of possible quantum degeneracy reflecting an effect of difference 
in velocities for up and down spins in polarized degenerate systems. 

The above results for spin pressure diffusion may be important in 
different experimental situations (e.g., refs. 15-17). For example, the experi- 
mental conditions of ref. 17 correspond to the known temperature gradient, 
the known (zero) mass current, and to a small spin diffusion current 
determined mainly by depolarization processes in the low-temperature cell. 
Under these conditions (especially due to a very large temperature gradient) 
one may observe considerable pressure (density) and magnetization 
gradients between high- and low-temperature cells, resulting in a necessary 
renormalization of the parameters of the low-temperature cell. 
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