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Transport phenomena in spin-polarized 3He systems are studied (normal 
Fermi liquid 3He~, 3He'd-He II solutions, gas 3He~, ~He~-4He gaseous 
mixtures). The transport coefficients, including the spin diffusion, spin ther- 
modiffusion, and spin bulk viscosity coefficients, are calculated for spin- 
polarized Fermi liquids and gaseous mixtures. The analogy of the "spin 
rotation effect" in polarized nondegenerate gases with similar phenomena 
in degenerate Fermi systems and with collisionless spin oscillations is dis- 
cussed. 

1. INTRODUCTION 

Considerable progress has been achieved in the study of spin-polarized 
quantum systems. Experimental 1-4 and theoretical 5-12 investigations of 
polarized Fermi systems concern mainly normal Fermi liquid ariel' and 
three dilute phases of 3He1': liquid 3Hel ' -HelI  solutions, gas 3He1', 
and 3Hel'-aHe gaseous mixtures (see also reviews in Refs. 13 and 14). 
Though the properties of all these phases are very different, the polarization 
of 3He spin systems leads in many cases to common effects. In this paper 
the influence of the spin polarization on hydrodynamics, kinetics and the 
helium phase diagram is discussed. In this section we introduce a hydrody- 
namic equation and kinetic coefficients corresponding to the motion of the 
aHe magnetic moment. The values of the kinetic coefficients are given in 
Section 2 for the dense polarized Fermi systems, and in Section 3 for dilute 
systems (some details of the calculations can be found in Appendices). In 
the last section we consider possibilities of observing the properties of two 
new phases at the 3Hel'/3Hel'-4He equilibrium. 

The spin polarization that changes t h e  values of all the kinetic 
coefficients and thermodynamic parameters of 3He systems also gives rise 
to an additional dynamical variable--the magnetic moment (per unit 
volume) M. This results in a new hydrodynamic equation, a low-frequency 
mode, and a number of new transport coefficients. The macroscopic 
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equation of motion for M can easily be derived in the same manner as in 
the well-known cases of usual polarized paramagnets or ferromagnets, 
taking into account the magnetic contribution to the energy 8E = He 8M (He 
is an effective magnetic field). In the exchange approximation the equation 
in M takes the simple form of the magnetic moment conservation law, 

0__M~ 0 .~ 
Ot + 0--~--k-k Ik = 0 (1) 

and the problem reduces to the calculation of the spin current i~ 
(here and below, Greek indices denote the components of vectors in spin 
space, and Latin indices those in real space; in the exchange approximation 
there are no mixed summations over spin and spatial indices). 

The characteristic feature of 3He spin systems is the relation between 
the relaxation times of the spin-conserving exchange processes r and the 
weak nuclear dipole interaction rd, which establishes the thermodynamic 
equilibrium value of M. Even in dense helium systems re at low tem- 
peratures T may be tens of minutes; in delute 3He phases the value of rd 
can be still larger. Therefore in the usual low-temperature experiments 
always care >> 1, while both regimes car << 1 and car >> 1 can be realized. For 
this reason the nuclear dipole interaction provides only small corrections 
to the conservation law (1). Moreover, the weakness of the nuclear dipole 
interaction means that one can often observe nonequilibrium long-lived 
polarized states in which the magnetization M is not determined by the 
minimization of the total energy at constant external magnetic field H. In 
these states the value of M may be by no means related to the field H, 
and, in contrast to usual paramagnets, the polarized helium system can 
exist even in the absence of an external field. The creation of such 
quasiequilibrium states is one of the main methods of 3He polarization. In 
not very dilute 3He phases with high polarization always He >> H. 

In hydrodynamics the spin current is given by an expansion in small 
values of gradients. It is convenient to choose as a hydrodynamic variable 
instead of M the spin system polarization vector ~ = M/f iN3  (here N3 is 
the number of 3He atoms per unit volume,/3 ~ 0.08 mK/kOe is the 3He 
nuclear magnetic moment). The spin current being linearized in spatial 
gradients can always be represented in the form 

• '~ O ~ t 3 + A ~ r - ~ - T + A ~ o - ~ k  P It, = M~'vk + D'*t~Ox k k (2) 

where v is the fluid velocity and P is the pressure. In the exchange 
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approximation in the absence of the field, H = 0, the coefficients D ~ and 
A~,T depend only on the direction of the unit vector e = :~ /~  and can be 
written as 

D °'t3 = -~N3D[d&,~ + ( 1 -  d)e~,et3 +Re'~/e~,] 
(3) 

A ~r = -~N3e~Dkr/T, A ~ = -~N3eJDke/P 

and using the continuity equation, we find that Eq. (1) takes the form 

O ~ kr 0 ke 0 P 
+(1-d)e~e"~xk~"+--T ~xk T+-fi~xk ]} 

OXk 

The right-hand side of Eq. (4) can be rewritten as 

(4) 

o ,)] 
-[~xo-~k (N3DR~-~ Ox--- ~ (5) 

The representation of the coefficients in the spin current (2) had been 
chosen in the form of Eq. (3) in order to emphasize the analogy of Eq. (4) 
with a standard hydrodynamic equation for binary solutions (see, e.g., Ref. 
15); in our case the vector~ behaves like the concentration of a dissolved 
component. This analogy is particularly transparent when the hydrodynamic 
perturbations do not change the direction of the magnetization (i.e., of the 
vector ~ - - t h e  z axis), and in Eq. (4) the anisotropy and the precession (5) 
vanish identically. In this'case Eq. (4) is reduced to the scalar equation 

[ ,o k,±e' l 0 D N 3 ( ~ r ~ Z + _ . ~ T  + =0 
Or P Or / J 

(6) 

This considerably simplifies the evaluation of the kinetic coefficients. In 
Eqs. (3), (4), and (6) the coefficients D, Dkr, and Dke have the meaning 
of the spin diffusion, spin thermodiffusion, and spin pressure diffusion 
coefficients. The quantity Dd in Eqs. (3) and (4) is the transverse spin 
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diffusion coefficient and determines the damping of spin oscillations (the 
precession of the magnetic moment in the effective field in the presence 
of the transverse magnetization gradient), which are specified by the quan- 
tity DR. 

The presence of an external magnetic field causes the precession of 
the magnetization vector [the additional term 2/~[H x M]/h in Eq. (1)] and 
the formation of a new characteristic direction in the spin space. Since in 
polarized helium systems the vector H is not necessarily parallel to the 
quasiequilibrium value of M, the presence of this new direction changes 
essentially all the symmetry properties of the system. In this case the vectors 
Ar.e are not parallel to M, and the tensor D ~ is not diagonalized, as in 
Eq. (3), choosing the magnetization as one of the coordinate axes. Below, 
the direction of H (if H ~ 0) is always supposed to coincide with that of 
the quasiequilibrium magnetization. 

The weak dipole interaction in most of the cases leads mainly to 
insignificant corrections of the hydrodynamic and kinetic parameters. The 
most important manifestation of this interaction is the violation of the 
magnetic moment conservation law, i.e., the inclusion of the right-hand 
side K(~, H) in Eq. (1). In the usual hydrodynamics of binary mixtures 
the analogous effect corresponds to taking into account slow chemical 
reactions and leads to the formation of second (bulk) viscosity. 15 In our 
case the dipole interaction also gives rise to the spin bulk viscosity. The 
calculation of K is simplified considerably due to the very small ratio of 
exchange and dipole relaxation times. Therefore to evaluate dM~/dt one 
has to suppose all the distribution functions as equilibrium (with respect 
to energies and momenta) and to consider the collisions of 3He particles 
with definite spin projections. When the magnetization deviates only slightly 
from the equilibrium value M0(H) 

K = - ( M -  Mo)/ra (7) 

For markedly nonequilibrium systems with a high degree of polarization 
K ~ e(~3 + 1)2/~N3/4-r~, where ~-~ differs considerably from "ca in Eq. (7). 

The 3He polarization does not much change the equations of the mass 
and momentum conservation laws. Only the expressions for the heat flow 
and the dissipative function are subjected to considerable modification; 
the expressions for these quantities can be easily derived by analogy with 
the usual diffusion equations 15 using Eqs. (2) and (3) for the spin current. 

The form of the hydrodynamic equations (1)-(7) is quite general and 
does not suppose any assumptions concerning the degeneracy of the system 
or the character of the interaction. Analogous equations have already been 
studied for some types of helium systems 1°'11'17 (see below). 
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2. DENSE FERMI LIQUID (3Her) 

Unfortunately there is no consistent microscopic procedure for evaluat- 
ing the ground state parameters of a dense Fermi liquid like 3He. The 
relation between the parameters of the same system at different degrees 
of polarization is also unknown. Up to now it has been possible to perform 
such calculations only for dilute systems. 14 Therefore practically the only 
way to describe dense Fermi liquid 3He1' is to apply the Landau theory of 
Fermi liquids and to express all the quantities of interest in terms of 
harmonics of the f-function and phenomenological scattering probabilities 
at the given degree of polarization. In this case the comparison with 
experimental data will provide the information on the dependence of Fermi 
liquid characteristics on the degree of polarization. 

In the exchange approximation the Fermi liquid function has the form 
(the directions of field and polarization coincide) 

fa~.~,,(P, P') = ~ (P, p')8~8,.,, + ((p, p')o',~ or.,. 

+[¢, (p, p')o'~8,~,. + ¢, (p', p)cr,~,,8,~ ]e 

+ ~¢(p, p')(cr,~ e)(cr,...e) (8) 

where p and p' are the quasiparticle momenta and o'~ a are Pauli matrices. 
All the final results will include the harmonics in the expansion of the 
Fermi liquid function in Legendre polynomials on the Fermi surfaces of 
radii p± (p± are the radii of the Fermi spheres or Fermi momenta of 
quasiparticles with spin projections ±1/2  on the z axis, i.e., the axis ~). 
Let us denote the corresponding harmonics as 

~]g ab'dr~(n) = n +-~ --2.tr2h3 O(pa, p'b)P,(cos x)  d cos g (9) 

7(n) ~,.(,) and E(~ ) for the functions ~', ~0, and ~:. Here the and similarly ~ab,  wab, 
indices (a, b) take the values (+) or (-),  X is the angle between the vectors 
p~ and p~, and rn± denote the effective masses of quasiparticles on the 
corresponding Fermi surfaces. Most of the results are expressed through 
harmonics of the following four combinations of Fermi liquid functions: 

m (.") - a l t ( n )  " J - 7 ( n )  ± 2~±~(") + -(") + 1 
- -  ~r : t : ±  - - g . . , ± ±  )'~±-4- 

(lo) n(n) ~lt(n) 7(n)  ~d~(n) -rag(n) ~(n) 

In the dense spin-polarized Fermi liquids not all the components of 
the density matrix represent the well-defined quasiparticles with long life- 
times for which the Landau theory can be used in a straightforward manner. 
Only well-defined quasiparticles participate in phenomena that can be 
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described using the Fermi liquid functions in the combinations A and B 
in (10). These phenomena include most of the thermodynamic and transport 
processes and can be described using the diagonalized density matrix. All 
these processes can be expressed in terms of well-defined quasiparticles 
with definite spin projections, and while the direction of the magnetic 
moment does not change, all the quasiparticles remain near the respective 
Fermi surfaces. The problems with not well-defined quasiparticles and with 
the use of the Landau theory with Fermi liquid functions (8) not in the 
combinations (10) arise mainly when one is studying the dynamics of 
nondiagonal elements of the density matrix (processes accompanied by a 
change of the direction of the magnetic moment). In these cases there also 
is an additional problem with gradient terms in the free energy (see below). 
Note that all these problems vanish for dilute Fermi systems in the lowest 
orders in the interaction (concentration). 

With the help of the Fermi liquid functions (8)-(10) one can easily 
obtain the values of the main thermodynamic characteristics of the system; 
the evaluation procedure and the results are similar to those of the Landau 
theory of the multicomponent Fermi liquid (see Appendix A and, e.g., 
Ref. 16). 

In the case of the dense Fermi liquid 3He~' an equation of the form- 
(4) has been already derived (without spin thermodiffusion and pressure 
diffusion contributions) by Leggett a7 on the basis of the kinetic equation. 
Though the results of Ref. 17 (see also Ref. 18) were obtained as an 
expansion in the value of M, which was supposed to be small, the theory 17 
can be easily generalized to quasiequilibrium states with a high degree of 
polarization. 

The main characteristic of the magnetic moment precession in an 
effective field is (Oint'r'D, where ro is the exchange diffusion relaxation time, 
and (JOin t is the frequency inherent in the spin oscillations in the molecular 
field. The origin of wi.t is due to the term 

(i/h)[g, t~] (11) 

in the kinetic equation, where r~ = n~t~ and ~ = e,t~ are the density matrix 
and the energy of Fermi liquid quasiparticles, and [- , .  ] denotes the spin 
matrix commutator. For the quasiparticles the energy includes the 
term14,17-19 

f ~'(p, p')[n (p ' ) -  n o (p')] d3p'/(2~rh) 3 (12) 

where n ~ are the equilibrium distribution functions of up and down spins, 
and the frequency wint is of the order of (in the notations of Ref. 17 wi.tro 
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corresponds to ~M) 

O-)int ~ l~(°)N3~/h, O)intTD -- ~3(To/T)  2 (13) 

where To is the degeneracy (Fermi) temperature. Thus, but for the case of 
very weak polarization ~ ~< (T/To)  2 << 1, the value tointro >> 1. Hence, despite 
the fact that we are discussing the hydrodynamic region of low frequencies 
toro << 1 and small gradients, the spin oscillations behave just as in the 
high-frequency collisionless case. For this reason the value of D R  = u in 
Eq. (4) is equal to the proportionality factor v in the spectrum of collisionless 
spin waves in a polarized Fermi liquid 18'19 

to = vk 2 (14) 

and does not depend on ~'D (while D oC~'o, the value R oc 1/~-o). Taking 
into account also the weakly polarized states, we easily obtain as in Ref. 17 

O = ptointT"o, R = tointT"O/[1 -[- ( tointTO) 2] (15) 

Similarly, we get the following for the coefficient d in Eq. (4): 

D d  = [1 + (toint7"O)2] -1  (16) 

Unfortunately, one cannot use for the coefficient v (and toi,t) in Eq. 
(14) the value of Refs. 17-19 in the case of a dense, strongly interacting 
Fermi liquid with a high degree of polarization. 

In Refs. 17-19 the frequency of precession of the magnetization vector 
in the molecular field has been expressed in terms of the Fermi liquid 
function. Such expressions, which are always valid for Fermi liquid oscilla- 
tions with a linear spectrum to(k), can be used for oscillations with a 
square-law dispersion (14) only in the cases (see, e.g., Ref. 14) of dilute 
or weakly interacting Fermi systems, pFao/h<< 1 (PF is the Fermi momen- 
tum, ao is the interaction radius), because the corresponding approach 
takes into account only the local Fermi liquid interaction (terms of order 
1/ao) and neglects all nonlocal effects (~pF/h) ,  which correspond to the 
gradient expansion of the Fermi liquid energy. Microscopically, this means 
a lack of accuracy in the high-order terms in k as one derives the quasi- 
classical kinetic equation from the exact quantum equation. Being derived 
macroscopically, the value v is given, apart from the usual f-function (8), 
also by additional phenomenological functions, which determine the func- 
tional dependence of the quasiparticle energy on the distribution function 
gradients. For example, there exists a term 

d3p , 
8e~,= )~,.,~ (p. p') 0-~-2 8n (p') (17) (27rh) 3 

where the spinor structure of the function 7 is analogous (in the exchange 
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approximation) to Eq. (8). The significant contribution of the energy (17) 
to the kinetic equation arises up to terms of the order of k 2 only from the 
operator (11). This gives rise in the equation for M to an additional term 
of the form 

a [MxaM] 
OXk L 3Xk.I 

with the coefficient depending on first harmonics of the function ~r(p, p,). 
In the case of a low degree of polarization the influence of Eq. (17) reduces 
to the addition of 

((°) 3 [MxOM] 
h 8x~ L -~xi3 

to Eq. (19) in Ref. 17, and it can be seen that this correction is small while 
M is small. In the cases of high polarizations similar corrections are 
considerable and must be taken into account. The coefficients u in (14) 
and wint in (13), being considered as phenomenological parameters of dense 
Fermi liquids, have to be determined from experimental data. These 
coefficients are simply related to the effective field. 

All the other kinetic coefficients, including those in Eqs. (4)-(5), can 
be evaluated explicitly and expressed by phenomenological probabilities 
W(p, p') for quasiparticle pair collisions near the Fermi surfaces of radii 
p±: W+ = W(p+, p~-), W_ = W(p_, p'-), W ' =  W(p+, p'-). As a result (see 
Appendix B), 

4~rZh6p2 m 4 (p+~3 
D = ' ~  T2m s m+m_~--2 \-~oJ N_N+ 

A(O) a (o) u(o)u(°) 
+ 1~. - -  - - . L a , +  /..~-- 

x N+N_(o~ +B (o+) + a _B (o_)) -t-l~' ~ ,2+a_~+-- (o) + N2_a +a (o_) 

OkT 

x (W'  sin 2 0 s i n 2 2 / f 3 >  -~ 

3"n'4h 6 Tm m+p 2 - (U_ V_) - -  2 - m _ p  + ( U +  - V + )  

T T2m2+m 2 _ p~ m p ~ ( U + U _ -  V+V_) 

• 2~ 2 U + = ( W ' (  e+s in2Osm ~ / f ± ) / f : ~ }  

2 < 1 - c o s O  \ m ±  
-'1- 2 W ±  m :~ (2 + 2 cos 0)1/2/ 

(18) 

(19) 
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V~ = -P~(W-f~(-- cos 0 + p± sin2 0 sin2 (~°/2))) 
p± p~ f~, 

2 -] 1/2 re±p± 
, 

\p~l \p~:/ mpo 

where po and m are the Fermi m o m e n t u m  and the effective mass in 
nonpolarized 3He, N± are the numbers of 3He particles with up or down 
spins per unit volume of 3He (N++N_ =N3), the quantities A (°) and B (°) 
are given by Eq. (10), and ( . . . )  means angular averaging. The spin pressure 
diffusion coefficient is evaluated from the usual thermodynamic relation 15 

kp = (PIN 2 )[0(/~ + - #~ _ ) / ON3 ]p 1 

(/~± are the chemical potentials for up and down spins), and can be 
transformed by Eqs. (A3)-(A4) to the form 

3P (N+m+/p2 )(N+B~) + N_A~  )) - (N=m_/p2 )(N_B~) + N+A~ )) 
k e=N3  (o) (o) (o) (o) B+ B -  - A +  A_ 

(20) 

The values of the viscosity ( and thermal conductivity x coefficients are 
given by 

3 5 + 2 h p + (p+/p_)3X~ + (p_/p+)SX+ _ (p_/p+)2 y-~ _ y ,  
= 

45 ~2 2 2 + - + x m +m_ X . X .  - Y .  Y~ 
21-3 3 2y+ 2 rr n p+ (p+/p_)X~ + (p_/p+)aX+ -(p_/p+) ~ - Y~ 

X -'~ - 3  2 2 + - + Tin+m_ x~x~ - Y ~  Y ~  

(sin2 0 sin 2 (~0/2) [ ( _ 0s in  2 (q~/2)) 
X ~ =  - fa_ W' 1 sin2 f2 

m z. p~ f3_ s i n 2 _ O _ c o s 2 ~ / 2 ) ] ~ )  
+ W ± m 2  p~ ( 2 + 2 c 0 s  0) 3/2 l + c o s 0  .ll 

Yn± = -  (P:~ sin20 sin2f3_ (q~/2) W ' ( c o s  O+ sin20 f+f_ sin2 (~0/2).] k)i/ 

:(k_ /2' 
2 

+ W±f~ re±p± 1 - c o s  0 ] \  
2 (2 + 2 cos 0)1/2j/ m ~p=~ 

Y~ = - cos 0 Jr sin2 0 sin 2 (4o/2) 
f+f- 

(21) 

(22) 
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As noted in Section 1, the dipole relaxation leads only to insignificant 
corrections (of the order r/~-a << 1) to the transport coefficients (18)-(22). 
Therefore the magnetization relaxation is important only for the 
phenomena which vanish to the exchange approximation. In 3Her hydrody- 
namics such a phenomenon is the spin second (bulk) viscosity. Slow dipole 
processes tending to level off the chemical potentials ~+ and/x_ cause the 
same consequences as, for example, slow chemical reactions in usual 
hydrodynamics.25 These slow processes with a very long relaxation time 
give rise to the bulk viscosity 

( = ~'0(1 - ioyra) -~ (23) 

where the low-frequency limit ((~o ~ 0) = (0 is given by 

( 0  =" m 3 g 3 ~ ' d ( C  2 - -  C 2 )  (24) 

Here Co is the first-sound velocity in the low-frequency limit tOrd ~ 0 in 
which the dipole interaction manages to establish local equilibrium values 
of the magnetization, and c¢o is the sound velocity in the opposite limit 
Wrd ~ CO in which the oscillations are too fast for the equilibrium value Mo 
to be reached. Certainly, one can discuss the spin second viscosity only in 
the case of equilibrium (in the nonperturbed state) polarization. Then 
the sound propagation is governed by Eqs. (1) and (6) with the right-hand 
side (7). 

The sound velocity c, i.e., the derivative 3P/ON3, is given by Eq. (A4), 
while the derivatives dN±/dN3 have to be calculated on the basis of Eq. 
(6) with the right-hand side (7): 

aN3 l +i/~o'rd --~-3 + OJrd-- - ~ 3  Y 

where N~ °) are the local equilibrium values of the spin densities N± [in 
Eq. (24) we did not take into account those corrections due to the exchange 
relaxation that are insignificant for the problem in question]. For the 
quantities 8N~ °) and 6/z ~) obeying the relations 3N(+ °) + 6N(_ °) = 8N3 and 

(o~ = 8tz~ ~ Ix + the derivatives ON~)/ON3 can be easily calculated using Eq. 
(A3). As a result 

. 2 + C o  2 2 1 OP ttOrdC 
c = - -  - (25) 

m 3  3 N 3  1 + ioYr  d 

where the limiting values of the sound velocity Co and c~o are given by 

N3(A~)A~_ °) B~)B (°)) p±m± 2 - -  - 

Co - m3tJ_(A(+O) _ B ( O ) ) +  m 3 ~ + ( A ( O ) _ B  (+o)), v± - 27r2h3 
(26) 

2 1 v N2+A~)+r'+N2-A(°)+N+N-(v-B~)+v+B~))] Coo = [ - _ 
m3N3~'+p-  
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Of course, when the polarization tends to zero, the spin second viscosity 
of polarized Fermi liquids (23), (24), (26) vanishes. According to Eq. (25), 
the spectrum o)(k) of sound oscillations has the form 

2 2 2 • 2 1 / 2  2 2 4 x l / 2  k =(~o/c0)[l+o) ras +t(s -1)oJ~'a] /(1+~o ~'as ) (27) 

where s = Co~Co. In the usual experiments o)ra >> 1 and Eq. (27) reduces to 

k = oJ/c~ + i(o/2m3N3c3r~ (28) 

where ~'0 is given by Eqs. (22) and (26). 
In 3He~' with a high degree of polarization the relative contributions 

of the shear and bulk viscosities are determined by the parameter o)2rza. 
A rough estimation shows that the spin second viscosity dominates at 
T -  1 mK only in quasistationary situations. A more accurate estimation 
is impossible due to a lack of information on ra in 3He]' with a high degree 
of polarization. 

Equations (18)-(26) give the values of the transport coefficients of 
dense spin-polarized Fermi liquids. Analogous results for dilute Fermi 
liquids can be found in Ref. 11. 

3. LOW-DENSITY 3He t SYSTEMS 

The kinetic behavior of dilute Fermi systems is of special interest, for 
the spin polarization of such systems leads to significant magnetokinetic 
phenomena--to the gigantic, practically unlimited growth of the kinetic 
coefficients with increasing polarization. 5"9-11'14 

There exist three types of possible dilute 3He1' systems: liquid 3He'd- 
He II solutions, a 3He~' gas, and 3He~'-4He gaseous mixtures. While the 
first of these systems may be, depending on the 3He concentration and 
temperature, degenerate or nondegenerate, the second and the third are 
always nondegenerate. Nevertheless, there is a general procedure for study- 
ing all these systems in the same way with sufficient accuracy at low 
temperatures. This is made possible by the large value of the 3He particle 
wavelength h/p (p is the characteristic momentum) in comparison with 
the interacton radius ro. In degenerate 3He-He II solutions the condition 

pFro/h ~ N~/3ro << 1 (29) 

(PF is the Fermi momentum) is met because of the low density N3 of 3He 
particles in a solution, and for nondegenerate systems 

pTro/h ~ (rn T)1/2ro << 1 (30) 

(pT is the thermal momentum) because of low temperature. According to 
quantum mechanics, the interaction of these slow particles with large 
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wavelengths reduces mostly to S-wave scattering with amplitude indepen- 
dent of momenta. Therefore all interaction phenomena can be described 
to a high degree of accuracy by taking into account only the S-wave 
scattering and using as interaction parameters only the S-wave scattering 
length 14 a (collisions of 3He quasiparticles in 3He-He II solutions) or, in 
the cases of 3He and 3He-4He gases, the S-wave scattering lengths a33, 
a34, and a44 (collisions 3He-3He, 3He-aHe, and 4He-aHe, respectively). 
For this reason one can apply, e.g., the results 6'9'H'14 obtained for 3He-He 
II nondegenerate solutions in the first order in the interaction, to the 3He 
gas, replacing the effective mass M and the scattering length a for quasipar- 
ticles in solutions by the 3He atomic mass m3 and the scattering length a33. 

Within this approach there are no fundamental differences between 
the theories of degenerate and nondegenerate dilute 3He systems. To 
the main order in the interaction one can even apply the formalism 
of the Fermi liquid theory to the dilute nondegenerate Fermi gas (though 
the Fermi liquid excitations undergo a strong damping in the case of 
nondegenerate systems, this damping takes place only to the high-order 
terms unimportant for a dilute gas; for details see Ref. 14). The main order 
in the interaction in our case means exactly the principal term in the 
expansion in pro/h. To this order most of the hydrodynamic and thermody- 
namic results for degenerate and nondegenerate Fermi gases coincide very 
closely if one replaces pF by PT. Apart from this, for dilute systems there 
is no necessity to take into account gradient terms of the type (17); the 
contribution of such terms is small in comparison with those of the usual 
Fermi liquid terms due to Eqs. (29) and (30). 

From this point of view, it is easy to understand why the results of a 
thorough analysis of the kinetic equation for nondegenerate polarized 
gases ~° formally have much in common with the equations of Ref. 17 for 
degenerate systems. Below it is shown that the expressions for the "spin 
rotation effect" predicted by Lhuillier and Lalo~ m are practically the same 
for degenerate and nondegenerate polarized Fermi gases in the main order 
in the interaction and can be easily derived within this accuracy using the 
Fermi liquid formalism. 

In the cases of dilute, degenerate and nondegenerate, Fermi systems 
the antisymmetric part of the Fermi liquid function in the first order in the 
interaction is constant 14 

~(p, p,) =__ ((o~ = -27ra h21M (31) 

(for the 3He gas the quantities a and M have to be replaced by a33 and 
m3). Hence the frequency a~int in (11)-(13), being the main characteristic 
of spin oscillations in the system, is given by 

O)int = (2((°)/h)(N+ - N_) (32) 
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For a degenerate Fermi gas the exchange diffusion relaxation time zo is 
of the order of Zo ~ ( N a a 2 v F ) - I ( T F / T )  2 (VF is the Fermi velocity), and for 
a nondegenerate gas by r o -  (N3aEvr )  -1 (VT is the thermal velocity). In 
both cases the conditions (29) and (30) cause the inequality tOintZD >> 1 to 
hold up to the lowest polarizations. For this reason weakly damped spin 
waves with the square-low spectrum (14) can propagate through the system 
independent of the degree of degeneracy. 6'1n'2e The difference between 
degenerate and nondegenerate gases, arising only from different types of 
equilibrium distribution functions in the integrands, is displayed in different 
values of To and the coefficient v in Eq. (14). In the degenerate gas 5A4 

(36"It) 1/3 h ~, +~r5/3 - N 5/3_ 

v -  2------d-~ M l a [  (N+-N_)  2 (33) 

and in the nondegenerate gas 6A4 

v = T/(M[toint[) (34) 

Equations (33) and (34) give the frequency of the spin oscillations (15) 
and their damping (16) in dilute polarized Fermi gases. The spin diffusion 
coefficients D are already known ~°'~1 and it is easy to evaluate to. The 
spin diffusion coefficient of a dilute degenerate gas is given by ~1 

D = 2D(0) --3- D(0) = P0 
p÷ 

and using Eqs. (15) and (33), we get 

zo  = lO[M2D(O)/p2olp2_ (p 3 _ p 3  )/(p~+O _p~O) 

The spin diffusion in a nondegenerate gas is independent of polariz- 
ation, I°,1~ 

D = ( 3 / 8 ) ( r r T / M ) l / E ( 2 r r a  2N3)-1 

and ro =3D/V2T.  These expressions combined with Eqs. (15) and (16) 
completely determine the coefficients D, R, and d in Eq. (4), and thereby 
the spin rotation effect. The remaining transport coefficients are given for 
the polarized degenerate Fermi gas in Refs. 11 and 14, and for the 
nondegenerate gas in Refs. 10 and 11. 

Of course, the mentioned analogy between degenerate and nondegen- 
erate gases exists only to the main order in the interaction, when the 
molecular field is given by the same expression (31). Considerable differen- 
ces arise if the higher order terms are considered. For example, spin waves 
can propagate through almost all polarized degenerate Fermi systems, while 
in nondegenerate systems the damping of the oscillations increases rapidly 
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with increasing density, The evaluation of the higher order corrections for 
the kinetic coeffÉcients of polarized nondegenerate Fermi gases at not very 
low temperatures has been developed by Lhuillier and Lalo~ 1°'12 and for 
degenerate gases by Baskin and Meyerovich TM (see also the results of 
Section 2). 

The above discussion concerned mainly 3He systems with the kinetics 
specified by the 3He-3He interaction, i.e., 3He-He II solutions and gaseous 
3He. For 3He~'-4He gaseous mixtures the 3He-4He and 4He-4He collisions 
are also important. Considering these mixtures, one has to take into account 
a new hydrodynamic variable--the 4He concentration c4 =N4/(N3+N4) 
(N4 is the number of 4He atoms per unit volume), and to introduce an 
additional equation--the 4He mass conservation law. The presence of 4He 
particles has a straightforward effect on Eqs. (4) and (6): one has only to 
include one more "vector" term in the spin current (2): 

O 
jk = eD34 Oxk c4 (35) 

Of course, 4He atoms do not change the precession of the magnetic moment 
in the molecular field. But the 4He atoms are very important for the 
coefficients of the spin (and mass) diffusion, thermodiffusion, pressure 
diffusion, viscosity, and thermal conductivity. For 3He~'-4He mixtures it is 
more convenient to introduce the diffusion coefficients in a form somewhat 
different from Eqs. (3) and (35). Equation (6) for the longitudinal com- 
ponent of the magnetic moment can be rewritten [using (35)] as (cf. Ref. 10) 

3N±/ Ot + 3(N:~l)k ) / OXk 4- c~ l':ek / OXk = 0 

j:~ = -- (N3 4- N4)(m3¢3 + m4c4)-l(m3 D±~vc-~ (36) 

4- m4D ~4Vc4 + D~'q P/ P) + (D ~/ T)V T 

and the 4He continuity equation as 

3N4/ Ot + 3(N4vk ) / 3xk + 3f~4) / Oxk = 0 

j(4) = _ (N3 +N4)(m3c3 + m4c4)-l[rn3(D4+'qc+ (37) 

+ D 4 - V c - )  + (O~/P)VP] + ( D T / T ) V T  

where c± =N±/(N3+N4), c4=N4/ (N3+N4) ,  c3 = c + + c _  = 1 - c 4 ,  a n d  m3,4 
are the 3He and 4He atomic masses. In these notations the diffusion currents 
(36) and (37) are analogous to the usual expressions for a ternary mixture. 
For the helium atoms collisions reduce at low temperatures (30) to S-wave 
scattering with amplitude independent of momenta; and the transport 
coefficients of the mixture are given by the well-known results of the 
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Chapman-Enskog theory in the hard-sphere approximation. 23 There are 
also two additional simplifications. First, one has to take into account in 
considering 3He-3He collisions only the interaction of particles with 
opposite spin projections (S-wave scattering). Second, the 3He-4He cross 
section does not depend on the 3He spin state. Due to these simplifications, 
all the coefficients in Eqs. (36) and (37) can be expressed by means of only 
two diffusion characteristics of binary interaction, 

D = (3/16)(N3 +N4)-la 32 (T/qrm3) a/2 
D'  = (3/32)(N3 +N4)-1a32 (7T/2qrrna) 1/2 

The coefficients/9 and D'  have the meaning of the diffusion coefficients 
in the binary mixtures (3He+, 3He-) and (3He, 4He) with densities N3 +N4. 
Using the data of Ref. 23, one easily obtains the following values for the 
diffusion coefficients in Eqs. (36) and (37): 

D+_ =D-+  = (DD'/S)(1 + C4/3), D4± = D '  

O ±, = (D'/S)(c~D' + (D/4)(3c~ + 4c4)] 

S = c4D +(1 --C4)19' 

The pressure diffusion coefficients are given by the usual thermodynamic 
relations 

De~ = [4m3c~c4D+_ + m4c4(c4 -- 1)D±4]/(3 + c4) 

D4 P = m3c4(1 - c4)D'/(3 + c4) 

After cumbersome calculations, and with the help of Ref. 23, we obtain 
for the viscosity of a polarized 3He-4He gaseous mixture the expression 

{~44( 15c+c_c4 c 4 4 c  2 +4c 2 - +2c+c_ 1_9 c4(1-c4)~ q 2 
r /= r/3 ~/' ] r/3 

+4C4,r/3,r/----~ [(2c2+2c2+c+c_)(1+2916 1 cC4) + 9] 

+ ~ - ~ [ ~ c 4 9  c4 I '92+2c4(1_c4)+298(1_c4)2]} 

xI9c4[ 5c+C- ' -----f--~Zrl3 -----Trl3r194 c(~') 2] + 435c+c-(1-c4)__8 2 , 

rl3rl 

c4 [ ~ _  __ 4C 2 ] + 2~_~_~ C Z41-- C4 ~ -1 + ~  (1 --C4)2--2C+C_--4C 2 ( - ~ j  
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Here we have introduced three auxiliary coefficients, 

9"/3 = 377 (0)  = (15/16)(~'m3T)l/2(8~ra23 )--1 

rt' = (49/16)7/34 = (245/256)(87rm3T/7)1/2(4"tra~4)-1 

'T]4 = ( 5 /16)(rrm4T) l/2(87ra24 ) ~1 

where ~/(0) and 774 are the viscosities of pure nonpolarized 3He and pure 
4He, and ~734 is the viscosity of the gas of particles with atomic mass 

47ra 34. The most interesting case is c4, m3m4/(m3 + m 4 )  and cross section a 
c-<< 1, because even a very small concentration of 4He impurities in SHe1' 
gas will limit the growth of the SHe atom mean free path with increasing 
3He polarization (magnetokinetic effect): 

r/(c_, ca << 1) = 47137 / ' /[3c-rl '+ (98/29)c4r/3] 

The rest of the transport coefficients (the 3He]'-4He thermal conductivity 
and thermodiffusion) are even more unwieldy than Eq. (38). We shall give 
only the value of the thermal conductivity coefficient in the case of high 
polarization, c_ << Ca: 

x = {60 + (23/4)(1-  c4) 2 -  (25/6)c] 

+ 2[(49/3)(x'/x4) - 33]c4(1 - c4)} 

× [(1441/16)(1 -c4)(c4/~') + (335/8)(c~/~4)] - t  (38) 

Here x4 = (15/4)~74 is the thermal conductivity of pure 4He, and ~ '=  
(15/4)~34 is the thermal conductivity of the gas of particles with atomic 
mass m3m4/(m3 + m,~) and cross section 47raa34. 

4. 3He~'/3Het~He PHASE EQUILIBRIUM 

The principal object of this section is to point out the existence of new 
unusual solid and liquid phases of 3He]'-4He solutions at the 3HeJ'/3He]'- 
4He phase equilibrium. It is already known 7'8A4'24'25 that the 3He polariz- 
ation significantly changes the 3He phase diagram and, in particular, alters 
the mutual solubility of the helium isotopes. Nevertheless, there are two 
possibilities which seem to be of special interest from both theoretical and 
experimental points of view. 

In time intervals less than ~'a (as stated in Section 1 the dipole relaxation 
time za may exceed tens of minutes), the equilibrium between pure 3He1' 
and a 3He~'-4He solution is specified by the conditions ~-=/z~-  and 
tz ]- =/.t 2, where / .~  and/~:  are the chemical potentials of 3He particles 
with different spin projections in the pure phase and in solution. When the 
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energy scales are significantly different in these phases, the spin system 
polarization has different effects on/x ~: and/z ~:. As a result the equilibrium 
conditions/.t ~ (~1) =/z ~: (~2) are fulfilled at different degrees of polarization 
~i,2 of both phases and the equilibrium 3He concentration in the solution 
also depends on ~1,2. The influence of polarization on the phase equilibrium 
is evident in the case of weak polarization when the change of energy with 
polarization is proportional to the square of ~1,2- In this case 

~(~1,2 = Xl,E~N3/O(1N1 +x2N2), ~1/~2 = X1/X2 (39) 

where X1,2 are the susceptibilities (per 3He particle) in pure 3He and in 
3He-4He, ~ = (~31N1 + ~2N2)/N3 is the total degree of polarization of the 
system, and N1.2 are the numbers of 3He atoms in the pure phase and the 
solution, NI-bN2 =N3. Due to the dependence of the 3He distribution 
between the phases N~/N2 on the relation between the numbers of 3He 
atoms N3 and 4He atoms N4 in the system, one can easily vary ~L2 by 
changing N3/N4. The main difficulty in solving the phase equilibrium 
equations is caused by the lack of information on the functions/z T (~1) for 
the dense 3He Fermi liquid; for dilute 3He phases the dependence tz(~3) 
is well known. 14 

At low temperatures 3He is not soluble in solid 4He. The demixing 
temperature of the solid mixture into the pure components is about 0.1 K, 
and the difference in chemical potentials of 3He atoms within 4He crystals 
and in pure nonpolarized (solid or liquid) 3He phase is 8/Zso~ ~< 0.1 K. The 
3He polarization does not significantly change the 3He chemical potentials 
in solid phases, and at low temperatures and high pressures the solid 
3Hel'-4He mixture will continue to separate into pure 3He1' and 4He crystals. 
Though the polarization leads to some decrease of the 3He melting pres- 
sure, 7,s this decrease is not very large and is of the order of magnitude of 
the 3He melting curve fall caused by the Pomeranchuk effect. Thus the 
3Het crystals melt at higher pressures than 4He. As a result we meet with 
one of the following situations as the pressure falls: the system consists 
either of two phases (solid 4He-liquid 3He'd) or of three phases (solid 
4He-liquid 3Hel'-liquid 3Hel'-4He solution with a relatively high 3He con- 
centration). In the absence of polarization the second possibility occurs at 
pressures slightly above the 4He melting curve, 26'27 and the former occurs 
at higher pressures. For our purposes it is not very important which of 
these possibilities is realized in the polarized system. What is important is 
that the change of the 3He chemical potential in liquid 3He or in concen- 
trated 3Het-4He solutions is of the order of several tenths of a degree and 
is likely to exeed 8/Zsol - 0.1 K. This means that 3He'~ melting is accompanied 
by the simultaneous penetration of 3He atoms into the 4He crystal. This 
phenomenon is, of course, a threshold effect and can occur only at a 
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sufficiently high degree of polarization. An extrapolation with the help of 
Eq. (39) gives for the threshold value of polarization the rough estimate 
0.2-0.3. Note that the impurity component of the crystal is always nearly 
completely polarized. 

This unique opportunity to obtain solid 3He-4He solutions at very low 
temperatures gives one a chance to study for the first time the impurity 
quasiparticles in quantum crystals in the case when the temperature is 
comparable with the quasiparticle bandwidth; up to now experiments have 
been carried out only for T > 0.1 K when the temperature has been much 
larger than the bandwidth and the interaction energy of quasiparticles. 
Many of the most interesting phenomena in quantum crystals, e.g., the 
localization or the ordering in the impurity quasiparticle system, have to 
take place at T < 0.1 K. Such a new low-temperature helium phase should 
manifest several unexpected properties of the impurity zero-point motion 
in quantum crystals. 

At lower pressures the equilibrium of the dense Fermi liquid 3He'~ 
and 3He'~-aHe liquid solutions should be observed. The properties of this 
solution differ essentially from the usually studied 3He-He II solutions. 
First, for dtz 1-/0~1 >> 0tx~/0~2 the solution is practically completely polar- 
ized, ~1 << ~2, even if the initial 3He crystal was not very highly polarized. 

± 
The second circumstance is much more important: the equilibrium Ix ~ = Ix z 
means a considerable increase in the maximum solubility of 3He in liquid 
He II. If the degree of helium polarization is sufficiently high, ~1 - ~ 2 -  1, 
the solubility increases (in comparison with the case ~ = 0) by a factor of 
three to four. Such a solution with a 3He concentration of the order of 
several tens of percent is a Fermi liquid with properties completely different 
from both conventional dilute 3He-He II solutions 14 and a dense 3He Fermi 
liquid. As for the hydrodynamics and kinetics, these concentrated solutions 
are described not by the formulas of Section 3 and Refs. 11 and 14, but 
by the results of Section 2. In addition, in studying the 3He quasiparticle 
interaction in concentrated solutions one should encounter considerable 
retardation effects due to the increase of the ratio of the 3He quasiparticle 
Fermi velocity to the sound velocity in liquid helium. 

The existence of 3He~'-He II solutions in a wide range of concentrations 
provides the possibility of investigating the gradual transition from the Case 
of the nearly ideal Fermi gas to the dense Fermi liquid. The transition of 
3He in spin-polarized solutions to a superfluid state cannot be caused by 
S-wave pairing except for the case of very low polarization. 14 The transition 
temperature for p-wave pairing is 3He concentration dependent and may 
exceed 10 -5 K in concentrated solutions. The properties of the correspond- 
ing superfluid phase are somewhat analogous to the well-known 3He-A1 
phase and are very different from superfluid 3He in nonpolarized or weakly 
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polarized 3He-He II solutions. The difference from 3He-Ai is related 
mainly to the simultaneous presence of two Bose condensates (SHe and 
4He) and the corresponding drag effects. 

A P P E N D I X  A 

In this Appendix we derive some thermodynamic relations for a 
spin-polarized Fermi liquid with a Fermi liquid function of the type (8)-(1 0). 
If the disturbances do not change the direction of magnetization, then the 
single-particle density matrix n,~a and the excitation energy e~ a can be 
diagonalized in spin space by choosing the z axis along the direction of 
magnetization M: 

n ~  ~n(p)8~t3 1 = + ~p (p)eo',,~, e~t3 = e 1 6 ~  - e 2 e o r ~  ( A 1 )  

At equilibrium the functions n+ = n +p and n_ = n - p  are the Fermi distri- 
bution functions for quasiparticles with spin projections ±½ on the z axis 
(the corresponding energies and chemical potentials are e± and/x±). 

If the spin densities N+ and N_ are varied (SN+ + 8N_ = 8N3), the 
changes of the chemical potentials/z± 

81.L± \ Op J p=p~ 

1 I d3p' 
+~ (8~ +cr~)f~,.~,(p~_, p') 8n,,~(p') (27rh) 3 

can be rewritten using Eqs. (8) and (A1) as 

6/z± = 27r2h3 8 N ± + f  {[~±+(±±q~+q~±' ±~+]6n+ 
m±p± 

d3p ' 
+ [0+ ~ (± -4- q~± - ~o '. ~: ~±] 8n_} (2~r h) 3 (A2) 

where f~- =/(p±, p'). With the help of notations (10), the relation (A2) takes 
the form 

6/x± = 2~'2h--~3 a~.°)8N± + 2"/r2h3 B~)6N~: (A3) 
re±p± m~p; 

The thermodynamic identity for the pressure (at T = 0 )  d P =  
N+ d>+ +AT_ dtz- can be represented, taking into account Eq. (A3), as 

dP = 27r 2h----~3 (N+A~) + N _ B ?  )) dN+ + 2~rZh3 (N_A?) + N+B~ )) dN_ 
rn +p + re_p_ 

(A4), 
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Equations (A3) and (A4) lead directly to Eq. (25) for the sound velocity 
and to Eq. (20). The spin diffusion coefficient is determined as a proportion- 
ality coefficient for the spin current and the magnetization gradient 
V(N±/N3) at constant pressure, and by equating (A4) to zero we get Eq. 
(B9) from Eq. (A3). 

The effective masses of quasiparticles of a polarized Fermi liquid can 
be expressed through the first harmonics of the f-function as 14 

(1) (1) (1) (1) m± A+ A_ - B +  B_ 
m A~) _/:f±-(1) (A5) 

The limiting case of a nonpolarized Fermi liquid corresponds to p+ = p_, 
m+=m_, A+=A_,  B+=B_, and ~0 =~¢'=~¢=0. Then A = W + Z ,  B =  

- Z  and the harmonics (9) of the Fermi liquid function differ from the 
common notations for a nonpolarized system only by the normalizing factor 
in the density of states. 

APPENDIX B 

Here we determine the transport coefficients of a spin-polarized Fermi 
liquid. For all disturbances conserving the direction of the magnetic 
moment,  the kinetic equation for the single-particle density matrix is 
diagonal in spin space and reduces to two scalar equations for the distribu- 
tion functions of up and down spins. The corresponding collision integrals 
are given by 

I d d 3 , , , /±(Pl) = -(2'rrh) -6 P2 Px d3P~ 8(el + e 2 - e l  - e 2 )  

X~(pl  +p2--p~ --p2) 

×{W±[nln2(1 ± ± -nv)(l:~ -n2,)-nrn2,(l± + ± -nl)(l± - n T ) ]  
t ± : ~  :=  ± :V +W[n ,n2(1 -n~ , ) (1 -n2 , ) -nvn2 , (1 -nT) (1 -n~)]}  (B1) 

where el = e (pi), n / =  n (Pi), W+ is the scattering probability of two quasiparti- 
+ + W t cles with momenta (p~-, p~-) into the state (Pv, P2'), and W_, are the 

analogous probabilities for the quasiparticle collisions on the Fermi sphere 
of radius p_ and for the quasiparticles from different Fermi spheres. 

The left-hand side of the linearized kinetic equation in the evaluation 
of the viscosity has the form 2° 

1 an t  [ ± ± 1 ± 2 "]lau~ au~, 2 _ au_t~ 
[pliplk--~(P ) SikJLaX + ~ x / - ~ 6 ' k ~ x t J  2m± ae:~ k 

where u is the fluid velocity. In the case of the thermal conductivity the 
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left-hand side is 

2 0e~= T s ± Pl  V T  

where s is the entropy per particle, and in the case of the spin diffusion 

1 an~= 

The deviation of the distribution functions n ~: from their equilibrium values 
n ~°) is of the form 

n = n ~o) + (On m)/Oe )v (B2) 

As in a nonpolarized system, the Fermi liquid corrections lead to the 
renormalization of v ± and do not change the values of the kinetic 
coefficients. The substitution of Eq. (B2) into Eq. (B1) reduces the 
expressions in square brackets to the form 

- ( 1 / T ) n  ln2(1 - n v)(1 - n2,)(t-'l + t"2 -- t - ' l ' -  P2') 

The introduction of the new variables dxi = p~ dp?/m~:T and integration 
removing the &functions transforms Eq. (B1) into 

2m ±m-----~2~ f ± ~= I+ (p l )=  (2,.n.h) 6 Tp~: dxl, dxz, d~zd~pn l  ( 1 - n v )  

x n 1 - n z ) ( v l  + v 2 - v ; - v 2 ' )  

W± ± ~= ± =~ :~ ] 
+ n 2 ( 1 - n z , ) ( v ,  +V2 --Pl'--P~:') (B3) 

3 g+ 

2 2 0 ~1/2 where g = (p+ +p_  +2p+p_ cos 2J , g ± = p + ( 2 + 2  cos 0 ~1/2 2J , q~ is the 
angle between the planes (Pl, P2) and (p~, p~), dO2 = d cos 02 d~o2, and 0i 
is the angle between the vectors p~ and Pl. We seek solutions of the kinetic 
equations for the viscosity, thermal conductivity, and spin diffusion, respec- 
tively, in the forms 

q ~ [  ± ± 1 2 \ /Oui  OUk 2 _  OUl) 
t , ~ ( p ) = ~ ' ~ P i P k  --'~p±Sik)~OXk+~Xi---~t~ik Oxl] ( a 4 )  

4- 4- 

v4-(p) = q~ p+ VT, u±(P) = qoP± VI~± 

where all the quantities q(r) depend only on r± = (e±-t~±)/T.  As a result, 
the integrations in Eq. (B3) over angular and energy variables decouple. 
The quasiparticle collisions in degenerate systems are accompanied by a 
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very small energy transfer, and analogous to Ref. 20, we are interested in 
the values of the functions q (r) only in the vicinity of r = 0. Hence in the 
cases of the viscosity and spin diffusion it is possible to substitute q (0) for 
q(r) into Eqs. (B3) and (B4). A somewhat more complicated analysis for 
the thermal conductivity shows that one can approximate q~(r)= rq'(O). 
These simplifications make the integration over dxv dx2, quite trivial. The 
remaining angular integrals involve the functions of cos 01, and cos 0z,, 
which are determined by the conservation laws 

• 2 ~  cos 01, = 1 -2p2  sin 2 02 sin ~ (p2 +p2 z + 2pip2 cos 0z) -1, 

cos 02, = (px/p2)+cos 02-(Pl /P2) cos 01, 

where for the momenta Pl,: one should put the values p±. This results in 
the following equations in q~ and q~: 

1 = 247r4T2(2rch)-6m2m2 3 2 ± :~ :~ (P~:/P±)[qn (0)X. +qn (0) r ~  ] 
(BS) 

1 = (16~r4/3)T2(2"rrh)-6rnZ+m2 '± :~ '* ~: _ (p:~/p+)[q ~ (O)X, ,  + q,, (0) Y~  ] 

where the coefficients X and Y are given by Eqs. (21) and (22). The 
solutions of Eqs. (B5) are to be substituted into the expressions for the 
momentum flow 

ILk= P~o---~kt0e+ v ; +  0e_ v ;  (2rrh) 3 

and the energy flow (with the additional condition of the absence of the 
spin currents) 

f Oe[dn~) + Ou~) ] d3p 
c3pl t c3e+ c3e_ ( 2 , t r h )  3 

In doing so, one obtains for the coefficients of viscosity 

( Ou, ,gUk 2 _  Out'] 
II~k = - '0 \aXk + ~ - -  "3 0~k ,9xd 

2 q ; ( 0 ) +  q;(0)  
r /  - 15~.2h 3 tm+ 

and thermal conductivity 

T r a ,+ 3 ,- 
O = - x  VT, n = 3--6-~ tp+q,  (O)+p-q,  (0)] 

their values (21) and (22) [in Eqs. (21) and (22), 0 ~ 02]. 
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In the case of the spin diffusion the set of equations in q~(O), 

4 " n ' 3 T 2  2 2 3 ± ~: 

1 - (2~" h)  6 m +m _p ~ [q D (0) - -  q D ( 0 ) ]  

x I --W~ sin2 0 sin2 ~° g ~ d cos O dq~ (B6) 

is similar to Eqs. (B5) but has a determinant equal to zero. Equation (B6) 
has to be solved taking into account the condition of the absence of the 
mass flow 

j - - j + + j - = O ,  l = p± Oe+ u (2~rh) 3 (B7) 

which corresponds to the equation 

3 + 3 - p+qo(O) +p-qo(O) = 0 (B8) 

The solutions q~,(0) of Eqs. (B6) and (B8) should be substituted into 
expressions (B7) for the spin currents j±. In the final results the gradients 
V/z± have to be replaced by 

V.±  = (0"±~ Vc± 
\ Oc±] v 

2¢r 2h 3N2N:~ (A (+°>A (_o) _ B (+°)B (o>) 
rn+p+N_(N_A (O_) + N+B(+O)) + m_p_N+(N+A (+O) + N_B(O) ) (B9) 

where c± = N±IN3 and the derivatives are evaluated using Eqs. (A3) and 
(A4). The proportionality factor for j± and Vc± determines the spin diffusion 
coefficient D, which turns out to be equal to (18). 

The calculation of the spin thermodiffusion coefficient is more compli- 
cated. The antisymmetric part of the distribution function q '± (0) is evalu- 
ated as in the case of the thermal conductivity from Eq. (B5). The symmetric 
part q(0) is given by the homogeneous equation (B6) and the condition of 
the zero mass current (B7). This results in the relation 

q±(O) = -['tr2T/(p3+ + p3 )][m+p+q,+(O) + m_p_q'-(O)] 

When the corresponding values of q'±(0) and q±(0) are substituted into 
the expressions (B7) for the spin currents j±, they lead to the formula (19) 
for the spin thermodiffusion coefficient. 

The above expressions coincide with the well-known results z°'21 for 
nonpolarized Fermi liquids if m+ = m_, p+ = p_, W+ = W_, X ÷ = X - ,  Y+ = 
Y-. In the case of a polarized dilute degenerate Fermi gas 5A1"14 m+--m_ 
and W± = 0, and one has to use for the probability W'(O, ~)=cons t  its 
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v a l u e  fo r  S - w a v e  s c a t t e r i n g ;  as a r e su l t  t h e  a n g u l a r  i n t e g r a t i o n s  in E q s .  

( 1 8 ) - ( 2 2 )  can  b e  eas i ly  c a r r i e d  ou t .  
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