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Transport phenomena in partially spin-polarized 3He-4He solutions are 
investigated. The polarization causes considerable changes in kinetic 
coefficients and also gives rise to new dissipative processes, such as spin 
thermodiffusion and second viscosity. The transport coefficients are calculated 
for degenerate and nondegenerate 3He~-*He solutions. The absdrption of 
first- and second-sound waves is studied. Second-sound propagation is 
affected by weak dipole interactions and its velocity depends significantly 
on the frequency. 

1. INTRODUCTION 

There is considerable interest in the properties of spin-polarized quan- 
tum systems such as H~', D~', SHe]', etc. Polarized 3He~'-4He solutions also 
possess completely new properties, including magnetokinetic phenomena-- 
a large growth of the mean free path and the relaxation time of 3He 
quasiparticles due to polarization of the 3He spin system. The origin of 
these phenomena and predicted effects has been discussed in Ref. 1. 

GreywaU and Paalanen 2 have recently performed measurements of 
the second-sound propagation in partially spin-polarized 3He~'-4He solu- 
tions. Not only has this experiment provided precise data on the change 
in the sound velocity, it has also demonstrated qualitatively the growth of 
the second-sound attenuation resulting from the polarization. The results 
show that direct observation of magnetokinetic effects is possible. 

However, the experiments cannot be interpreted completely on the 
basis of available theoretical information. There is no general theory 
of spin diffusion for NMR experiments in polarized solutions. Mag- 
netokinetic effects in nondegenerate solutions have not been studied, 
though the corresponding effects are more pronounced in dilute mixtures 
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with low degeneracy temperatures. The existing theory of sound propaga- 
tion is not developed sufficiently to explain results on the frequency disper- 
sion and attenuation. 

All these problems are studied below. In Section 2, transport 
coefficients, including spin diffusion and spin thermodiffusion coefficients, 
are calculated for degenerate and nondegenerate 3Hel'-4He solutions. In 
Section 3 we study the first-sound attenuation in 3Hel'-~He for arbitrary 
frequencies and evaluate all significant relaxation times. Section 4 is 
devoted to the frequency dispersion theory of the second-sound velocity 
and attenuation. In an Appendix we evaluate some important parameters 
of the solutions from the experimental results 2 on the second-sound 
velocity. 

Throughout this paper we use the theoretical approach and notations 
of Ref. 1. Low-temperature kinetic phenomena in 3He-He ii solutions are 
determined by the Fermi component of the solution and are specified by 
the interaction of 3He quasiparticles. At low temperatures and 3He con- 
centrations the system of impurity 3He atoms forms a dilute Fermi gas of 
slow quasiparticles dissolved in a superftuid Bose background of 4He. The 
interaction of slow particles reduces mostly to S-wave scattering with 
amplitude independent of momenta. Therefore all kinetic quantities can 
be characterized using just a single parameter of the quasiparticle interac- 
tion: the S-wave scattering length a, which is equal to a ~ - 1 . 5  A.1 The 
accuracy of this approximation is based on the inequalities 

hZ/Ma 2 >> To, T (1) 

Here T is the temperature of the solution, To = p~/2M is the degeneracy 
temperature of the nonpolarized solution, po = (3~2N3)l/3h is the 3He 
quasiparticle Fermi momentum, N3 is the number of 3He atoms per unit 
volume of the solution, M ~ 2.3m3 is the effective mass of an impurity 3He 
excitation, and rn3 is the mass of the 3He atom. The first of inequalities 
(1) is important for degenerate solutions To >> T, and the second for nondeg- 
erate solutions. 

In the case of spin-polarized solutions the accuracy of (1) is very high, 
for accessible magnetic fields H ~< 100 kOe can only polarize to a consider- 
able degree solutions with 3He concentration less than 0.1% (To < 25 mK) 
at temperatures below 20 mK, while h2/Ma z -  1 K. This allows one to 
evaluate all the 3He~'-4He kinetic properties to the main order in the 
interaction. 

The relaxation processes in the 3He impurity system are due mostly 
to quasiparticle exchange interactions. The exception is the magnetization 
relaxation, which is determined by very weak dipole forces or by quasipar- 
ticle collisions with the walls. The dipole relaxation time in a 3He impurity 
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Fermi gas ~'a- (hTo/[34N 2 )(To~T) 2 ([3 ~ 0.08 mK/kOe is the 3He nuclear 
magnetic moment) has a scale of minutes and always exceeds the exchange 
relaxation times. Thus it is possible to create nonequilibrium long-lived 
polarized states of the solution. Most of the results obtained below are 
valid for both equilibrium and nonequilibrium polarized states. For this 
reason we use as thermodynamic variables not N3 and the external magnetic 
field H, but the densities of 3He particles with spins parallel (N÷) and 
antiparallel (N_) to the direction of the magnetic moment of the solution 
(N+ >~ N_, N+ + N_= N3). 

If the solution is polarized by an external field H, the up- and down-spin 
concentrations C± = N , / N 3  in the principal approximation in the 3He 
concentration are related to the field by the usual Stoner equations, which 
in the degenerate case take the simple form 

(p~/po)2 3 3 2 /3  - (2-p-,-/p0) = 413HM/p2o (2) 

where p± = (6~2N~:)l/3h is the radius of the Fermi sphere for up and down 
spins. 

2. KINETIC COEFFICIENTS 

2.1. Degenerate Solutions (Spin Diffusion) 

Transport phenomena in 3He-4He solutions are described by a great 
number of kinetic coefficients. The polarization of the spin system gives 
rise to some additional coefficients, such as spin thermodiffusion and spin 
pressure diffusion coefficients. However, the dissipation in dilute 3He~'-4He 
mixtures is caused mainly by the processes in the 3He impurity Fermi gas. 
The dependences of the degenerate impurity Fermi gas viscosity (7) and 

thermal conductivity (K) coefficients on the degree of polarization are given 
by 1 

1 

,F, 5-3(p-/p+) 

r /(0)=12 3 (aMT)2 

K =I(P+~ 3p+ 4+3(p_/p+) 4+, , ,6 
,~(0) 2\po] p- 3 - + ~  tP-/P+) 

K(O) = 8rr (aM)2T (3) 

The diffusion coefficients of the polarized impurity system are introduced 
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by the following macroscopic expression for the up- or down-spin flow: 

K ± 
j~=-N3DsIVC~ t +KSTvT T + ~ - ~  VFI} (4) 

K +  __ + Here Ds, s T - -Ksr ,  and Kse =-Ksp are the spin diffusion, spin 
thermodiffusion, and spin pressure diffusion coefficients, C ,  = N±/N3 is the 
concentration of up or down spins, and II is the 3He osmotic (partial) 
pressure. Note that Eq. (4) does not describe all the diffusion processes in 
3Hel'-4He solutions. This equation corresponds only to the relative up- 
and down-spin motions in the absence of the total 3He mass flow j+ + j -  = j = 
0. There are several other diffusion coefficients in 3He-4He in addition to 
those introduced above, but their influence on the dissipation processes is 
small at low 3He concentrations. 

The spin diffusion coefficient Ds of the nonpolarized Fermi system 
was calculated by Hone 3 using a method developed by Abrikosov and 
Khalatnikov. 4 Brooker and Sykes have since performed more precise 
calculations, s In the case of nonpolarized 3He-4He solutions the result 3 
takes the form a 

, 
= g (5) 

The diffusion coefficient of the partially polarized solution can be 
determined by solving the kinetic equation for the single-particle density 
matrix. If the z axis in spin space is chosen along the direction of the 
polarization, the equilibrium density matrix and the quasiparticles Hamil- 
tonian are diagonal, and we obtain, in place of four kinetic equations, two 
equations for the diagonal components of the density matrix: 

0rt ± 0/,t ± c3e ~ 0rt + c3e ± 
4 - -  = 5~:~(p) (6) 

Ot Or Op Op ar 

where n :~ and e ~: are the distribution functions and the energies of up and 
down spins. The kinetic equations (6) for quasiparticles with different spin 
projections are coupled via collision integrals 

2 
5~a:(Pl)  = (2"rrh) 6 1 d3p2 d3pl' d3pz' 

=i: :t: q :  

× 8(pl + p z - p l ' - p 2 ' )  8(e~: +e2 --El'--E2') 

× W[n~n~(1- n~,)(1-n2~,)-nl~,n2~,(1- n~:)(1 - n~:)] (7) 
:t= :t= ~: where n• = n (p~), e~ = e (pi), and the probability W of S-wave scattering 
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of 3He quasiparticles with momenta  p~, p~ into the state pl ~,, p2 ~, is indepen- 
dent of momenta  and, to the exchange approximation for the spin diffusion, 
is equal to W = ¼(27rh)3(a/M)2.1 

One has to calculate the diffusion coefficient at constant temperature 
and 3He osmotic pressure V T = VII = 0. Then the gradients of the chemical 
potentials for up and down spins/z± are proportional to the spin concentra- 
tion gradient, 

2 r t r2r t r2 /3  
p ±  1~ 31~t ~: 

~lx± = +3MN± gS+/3 + g 5/3 VC+ (8) 

On the left-hand side of the kinetic equations (6), as always in order 
to evaluate the kinetic coefficients, one must substitute the local equilibrium 
distribution functions n ~ ( e ± - i z ± )  and linearize the equations in small 
values of the gradients, 

0n~ p,- 
0e ± M V/z~ = .,~±(p) (9) 

To calculate the collision integrals (7) we insert new variables dx~ = 
pi d p J M T  and perform the integration removing the &functions,  

2 M 3 T  I dxx, dx2, df~2 d¢ 
~¢±(Pl) = ( 2 ~  Wp~: - (p2+ + p2_ + 2p+p_ cos 02) 1/2 

× {u~ + vz - ul, - Uz,}n i n2 (1 - n ~:,)(1 - n2~,) (10) 

Here  ¢ is the angle between the planes (Pl, P2) and (Pv, P2,), df~2 = 
d cos 02 &o2, 0i is the angle between the vectors Pi and pl, and vl = v(pi) 
stands for the small deviation of the distribution function n (p~) 

c3no 
n, = no(p,)  + : - . ,  (11)  

oEi 

The solution of the integral equations (9)-(10) has the form 

± 

The quasiparticle collisions are accompanied by a very small energy transfer, 
1 3 4  and we can confine ourselves to the usual approximation " ' of the functions 

r((e - t z ) / T )  by their values r(0). This leads formally to the relaxtion time 
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approximation and simplifies the integration (10) over dxv, dxz, d~2. We 
have 

2"traM4T 2 I" d cos 02 d~p 
(21rh) 6 Wp~ J (p2+ +p2 +2p+p- cos 02) 1/2 {r±(O)[1 ~ C O S  01,] 

+P~ r~(0)[cos 02-cos 02,]} 
P± 

2 p ~. NZ3 N 2/3 
- +3MN± ~,+~r5/3 +N 5/3 (12) 

where we have taken into account Eq. (8). After the final angular integra- 
tion we obtain for r(0) the following linear equations: 

7ra2M2T 2 p3 2 p.,. N 2 NE/3 
6h 3 p--g+ [r+(O)-r~(O)]=+3MN±-- ~,r~r5/3+ +NS/3 (13) 

Since the spin diffusion (4) is defined with the additional condition of the 
absence of 3He mass flow, 

0 = f _  3 [an~_ ~,++~_p_v-) 
a p [0--~- p+ (14) 

Eqs. (13) have to be solved taking into account 

p3r+(O) +p3r-(O) = 0 (15) 

The solution of Eqs. (13), (15) has the form 
3 2 

r + ( 0 ) = _ _ ~ r - ( 0 ) =  67rh6 p+ N2N 2/3 
p_ aZM3T 2 p~ Ns+/3 + NS/3_ 

and the spin diffusion coefficient, defined by Eq. (4), is equal to 

(~_~) 5 N3N2_/3 (16) 
Ds = Ds(O) N5/3 +N5/3 

KST some- The calculation of the spin thermodiffusion coefficient ± is 
what more complicated. In this case the up- and down-spin flows are caused 
by the temperature gradient V T. The distribution function has the form 
u = r ( ( e - t z ) / T ) p V T  and now we have to approximate r(x) as r(x)= 
r(O) +xr'(O). The antisymmetric part of the distribution function r'(0) is 
determined by the kinetic equations 

1 0n~ e±-tz± 
m 0e ± T P~ VT = ~¢±(r'(0)) (17) 

After cumbersome calculations partly analogous to Eqs. (12), (13) we 
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obtain the following value of r'(O): 

r" (0) = 9 h3 P+ 4P 2 
2 ¢r(aMT) 2 p:~ 3p~ +p~ 

The value of r(0) is determined by the homogeneous equations for the 
symmetric part of the distribution functon and by the condition of the 
absence of the total 3He mass flow (14). Finally, the spin thermodiffusion 
coefficient takes the form 

DsK~T= 9 "a'h3 M T  3 p+p_ (p~-p~) (p_-3p+)  
T 8 (aMT)2 p~ p4 p~+3p2+ 

and the spin thermal diffusion ratio is equal to 

9,rr", M Z T  z pg pS++pS_ (p~-p:~)(p_-3p+) ± 
KST = 4 8 Po p_p2+ 2p5o p2 +3p2 

The spin pressure diffusion coefficient is evaluated from the usual 
thermodynamic relations for binary mixtures. In the case of degenerate 
solutions K ± sP has the form 

l~.r l /3  ~TI/3 
_ ~ /OC~\ 3 . . . . .  + ~ +~N5/3 +NS/3 )(N2/3 - N  2/3) 
KsP=-nl Tff 5 

while the partial pressure (3He osmotic pressure) is 

17 = (1/ 5 M)(p2+N+ + pZ__N_) 

2.2. Nondegenerate Solutions 

At low temperatures a 3He quasiparticle thermal wavelength is large 
in comparison with atomic dimensions. Thus it is possible to restrict oneself 
to the S-wave scattering describing the 3He quasiparticle interaction in 
dilute nondegenerate 3He~'-nHe mixtures. 1 The results for the S-wave 
scattering in the first order in the interaction coincide with those of the 
hard-sphere model, and within the exchange approximation the impurity 
3He component of nondegerate polarized solutions is analogous to the 
binary mixture of classical ideal gases. Hence the dependence of 3He~'-aHe 
kinetic coefficients on the degree of polarization is determined by the same 
relations as is the dependence of kinetic coefficients on the mixture con- 
centration for an ideal gas binary mixture. A somewhat analogous approach 
to the transport phenomena in polarized systems was developed by Lhuillier 
and Lalo~. 6 

In the Boltzmann region T >> To the 3He~'-4He transport properties 
are given by the well-known expressions 7 of the Chapman-Enskog theory 
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in the hard-sphere approximation. Note that for 3He~'-4He solutions in the 
S-wave approximation only the collisions of 3He quasiparticles with 
opposite spins are important. Thus in all formulas for classical binary 
mixtures one has to put formally the scattering cross sections of particles 
on the atoms of the same component equal to zero and to take into account 
only the collisions of atoms of different components. In our notation the 
corresponding effective cross section is equal to 87ra 2 in the case of the 
viscosity and thermal conductivity coefficients and to 27ra 2 for spin diffusion 
processes. A little manipulation yields that the 3He~'-4He viscosity and 
thermal conductivity in the Boltzmann region 

7/ N~ +s3-(N+-N_) 2 5 (~MT) 1/2 

n(O) 4N+N_ , rl(0) 8 87ra 2 

K 6 0 N ~ - N ~ - N  2 - - 6 6 N ÷ N _  75 (rrT/M) 1/2 
K (0) - 172N+N_ , K (0) 32 8 rra 2 

increase without limit in high magnetic fields N_ --> 0, and the spin diffusion 
coefficient 

3 (TrT/M) ~/2 
Ds 

8 2rra2N3 

does not depend on the polarization, while the spin thermal diffusion ratio 
is proportional to the degree of polarization 

5 N± - N~ :=  

g s r  = 
43 N3 

3. FIRST S O U N D  

The first-sound waves in 3He-He II solutions are mainly the oscillations 
of superfluid He n. Though 3He quasiparticles also participate in these 
oscillations, their influence on the sound velocity is small because of the 
low 3He concentration. However,  the first-sound attenuation at low tem- 
peratures is due predominantly to the impurity component.  Though the 
polarization of solutions is unimportant for the sound velocity 1, it must 
cause a tremendous increase of the sound absorption. 

At  low frequencies one can obtain the first-sound absorption coefficient 
from the hydrodynamic equations and express it in terms of the kinetic 
coefficients calculated above. Nevertheless first sound in 3He-4He solutions 
can also propagate in the high-frequency regime wr >> 1 (r is the characteris- 
tic relaxation time). The high-frequency regime is of special interest, for 
there are several different relaxation times in polarized systems. Below we 
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calculate the sound absorption coefficient in degenerate 3He]'-4He solu- 
tions, solving the kinetic equation at arbitrary tin-. This enables us to find 
all the significant relaxation times. 

For dilute 3He-4He mixtures one can neglect all the impurity correc- 
tions to the first-sound velocity, which coincides practically with the sound 
velocity So in pure He Ii. Then the oscillations of the superfluid velocity vs 
and the 4He density N4 provide the oscillating external field for 3He 
quasiparticles. 

The change of the 3He quasiparticle Hamiltonian in moving He II is 
equal to a 

6e = ot l m4s20 6Ne/ N4 + (1 - m3/ M)pvs (18) 

while the quantities 6N4 and vs are related to each other in the sound wave 
exp ( -  iwt + ikr) as 

6N4/N4 = VdSo, v~ = vsn, n = k / k  (19) 

Here m 4  is the 4He atomic mass and a x is a dimensionless parameter which 
characterizes the change in energy of a 3He quasiparticle with a change in 
4He density. The numerical value of a l is discussed in the Appendix. 
Although at low 3He concentrations the second term in Eq. (18) is less 
than the first (p ~ N~/3 ) both terms make the same contributions to the 
absorption coefficient. 

We seek the solution of the kinetic equation (6) in the form 

n = no (e ± -  ~±-p~v~) + u ~ 3no/Oe ± 

Instead of Eq. (9) we have 

~ . One[{ ~So  ) ~ + (,, 

--otlm4sovsq-(-~ p±n\  ] )pVq (20) 

where 8/x± is the change of the 3He chemical potential at the oscillations. 
The chemical potential 3/z~ is defined as 

I n:~ p± d3 p = 0 
c98 ~= 

We are interested in the exchange approximation in which the collisions 
do not change the particle polarization 

I~¢:~ d3p 0 
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and integrating Eq. (20), we obtain the value 

1 p2 vs 1 f ~ dlq 
6lx=~ = a~m4sov~ + 3 M So Mso J p±nv 4¢r 

As a result the kinetic equation (20) in the principal order in the concentra- 
tion takes the form 

5~ iw Ono { m3 m4 pn 
= --de -U+M-PV~-al"M-PV~+MsoU 

1 ~ d f l  1 p2 (pn)2 ] 
Mso, pnv ~--~-+g -~soVs----~soVs~ (21) 

while the collision integral is given by (10) [in this case w = (2~rh)3(a/M)a]. 
The angular dependence of the distribution function can be written as 

v = v~l)+ v ~z), v ~1) = r (e  - / x ) p v ~ ,  v ~2) = q ( e  - / x ) [ ( p n )  2 - 1  2 ~p ]vs 

The collision integral with the function u ~1) is transformed analogously to 
Eqs. (10)-(13), and the equation in r(0) reduces to 

[ m3 M] rr(aMT)Zp3[r±(O)_r~(O)] ito -r±(O)+-~-al = 6h 3 p---~-+ 

Since the solution of this equation 

r±(O) = m3/M- alm4/M (22) 

is real, the corresponding part of the distribution function does not con- 
tribute to the absorption. The substitution of u ~1), (22), into Eq. (21) results 
in the following equation in q(0): 

i¢o{ q±(O) + ~2so (M-  m3 + ctam4) } 

M 2 2 f = d COS 02 dq~ 
= - ~  a T p~: (p2 +p2 + 2p+p_ cos 02) 1/2 

× { q±(0)[1 - P2(cos 01,)] 

2 

+ q*(0)[P2(cos 02)-P2(cos 02,)][ (23) 
p~: J 

where P2(x) = (3x 2-1) /2 .  
The angular integral of the second term in the integrand (23) is equal 

to zero, and the equations in q~:(0) decouple. This means that within our 



Sound and Transport Phenomena in Spin-Polarized 3He-4He Solutions 281 

accuracy the mutual drag of different spin components of the Fermi system 
is absent and there are only two relaxation times ~-±. After some algebra, 
Eq. (23) takes the form 

1 FFl3q..,Olllq/14)/(1 ,..[i_..~ I q+ (O) = ~ ( M  - , \  o)'r~-J 

(24) r±=2-- ~ ~ 5-3(p~:/p+) 2 ~p~:; 

Thus, one of the relaxation times (r_) does not depend on the polarization, 
while the other (r+) increase practically without limit when the polarization 
approaches the saturation p_ -~ 0. 

The relaxation time ~" for the sound absorption processes in a nonpolar- 
ized Fermi liquid is related to the viscosity as 8 r /= ~'Np~/5M. In a polarized 
system one has to introduce two viscosity coefficients for up and down spins, 

rt~ = "r±N~:p~/5M (25) 

while the "static" viscosity (3) characterizing dissipative processes at low 
frequencies is 7/= 7/+ + 7/_. 

The dissipative function (R) is the time average of 

R=Id3p / On ; /~(2)+off +(p(2)+) + On ° t.,(2)- ~-(p(2)-)} 

The absorption coefficient -/is defined as 

1 (R) 
3/= 2S0 m4N4@s 2) 

and is equal to 

¢.OZ (1 __ _~..{_ O/1 /~4~ 2 4.~+ 4,1,/- 
3'=2m4N4s3 M - ~ ]  ( l+(wz+) 2 ~-l+(ror,)2) (26) 

In polarized solutions there are two absorption maxima at the frequen- 
cies ~o~-± = 1 instead of the single maximum wr = 1 in a nonpolarized system. 
As the polarization grows, one of these maxima remains in the same place 
and decreases to zero, while the other increases and moves to vanishingly 
low frequencies. At nearly full polarization the condition wr+ >> 1 is valid 
for all reasonable frequencies. 

The form of Eq. (26) permits one to write out directly the absorption 
coefficient in nonpolarized solutions for the hydrodynamic limit rot+ << 1. 

A result analogous to Eq. (26) in the case of nonpolarized solutions 
was obtained by Baym and Ebner. 9 
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4. SECOND SOUND AND DIPOLE RELAXATION 

4.1. Second-Sound Velocity 

In contrast to the velocity of first sound, the second-sound velocity s2 
changes considerably upon 3He'~-4He polarization.1 In addition s2 in 3He~'- 
4He depends essentially on the frequency. 2 

In previous sections we neglected the weak dipole interaction. This 
interaction (or the particle collisions with the walls) does not conserve spin 
densities N+ and N_ and, in spite of its weakness, strongly affects the sound 
propagation. The equilibrium spin densities N ~  ) are determined by the 
3He density ?43, the magnetic field intensity, and (in nondegenerate solu- 
tions) the temperature. At oscillations of N3 the densities N± also oscillate. 
But all the kinetic processes discussed above are of exchange origin and 
do not lead to the local equilibrium values N ~  ) (N3). The relaxation of spin 
densities N~ to their equilibrium values N ~  ) (N3) can be caused only by 
the dipole interaction with the very long relaxation time 7d (Td considerably 
exceeds all exchange relaxation times ~'ex calculated above). 

At low frequencies Wrd << 1 the densities N± relax to N ~  ) (N~) and the 
oscillations are truly adiabatic; at higher frequencies there is no such 
relaxation, and oscillations propagating with some other velocity corre- 
spond to the sound wave in a binary mixture of up and down spins with 
particle conservation in each component. This frequency dispersion of 
sound waves is analogous to the well-known case of sound propagation in 
media with possible chemical reactions or with some other slow relaxation 
processes. These slow processes usually lead to sound velocity frequency 
dependence and give rise to the second (bulk) viscosity. 

Such effects are best shown by the simplest example of second sound 
in degenerate 3He]'-4He solutions in the principal approximation in the 
3He concentration. Taking into account the dipole relaxation, we find that 
the continuity equations for 3He atoms have the form 

ON± N ±  - N ~  ) ON3 
- - + N ±  div v-~ =0,  - - + N 3  d ivv=  0, 

Ot Z d Ot 
(27) 

N+ + N _  = N ~  ~ + N ~  ) =N3 

where v is the hydrodynamic (normal) velocity. In Eqs. (27) we do not 
consider spin diffusion currents j±, (4), which are important only for the 
sound absorption. Equations (27) show that small oscillating deviations of 
the spin densities a N ±  in the sound wave exp( - hot) satisfy the equation 

N (°~ i 
6 N ±  - ~ 8N3 + (6N± - 6 N ~  ~ ) = 0 

P¢ 3 eO'r d 
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reducible to 

aN~ 1 U,~''T(°) i aN~)\ 

ON3 l+i/wrd ~N3 ÷ 
! (28) 

Oard ~ B  ] 

In the 3He quasiparticle degenerate Fermi gas 

dN~) (N~))1/3 
dN3 = (N~))1/3 + (Nm))1/3 (29) 

the second sound velocity 

1 all s2=  
M aN3 

is to be calculated using the following thermodynamic identity for the 3He 
osmotic pressure 17 in 3He~'-4He solutions: 

(6~'2)2/3h 2 (N2/3 + N2_/3 
dII = N+ dtz+ + N_ dlx- dN+ dN_) 

3M 

As a result the sound velocity s2 essentially depends on the frequency 

s 2 ( o , H ) =  1 (o) 2 2 (~) 1 + 2 [(s2 ) + (o rd) ( s 2 ) 2 ]  (30) 

where the low-frequency limit of the second-sound velocity s~2 °) - s2(oa = 0) 

(s(2O))2 = (6~2)2/3h2 N3 2Z/3N1B/3 
3M N1/3 +N1_/3 = 1/3 1/g-s2(H =0) + N+ +N_ 

was evaluated in Ref. 1 [s2(H = O) = po/M~/3 is the second-sound velocity 
in nonpolarized solutions], and in the high-frequency limit wrd >> 1 the 
velocity s(2 ~) - sz(o)ra ~ o0) 

2 2/3 2 5/3 5/3 
@0o),2 (6~') h ..2/3[[N+\ a_{N_'x ] 

22/3[(N+~5/3 "N_" 5/3' 
- -  

coincides with the result of Ref. 2. 
The frequency dispersion in degenerate solutions can be easily found 

also taking into account the quasiparticle (exchange) interaction. Then the 
sound velocity is equal to ~ 

s2 1 {  dlX++N_dlx_~ 22m4 /~3 
= - a l S o - -  - -  (31) 

2 N+ dN3 dN3J M N4 
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while the deviations of/z± caused by the interaction are 

~tx± = (4"trahZ/M)N:~ 

and for derivatives dN~)/dN3 one has to use, instead of Eq. (29), their 
values 1 including the interaction. It is worth mentioning that the second 
term in Eq. (31) corresponding to the 4He drag in the second-sound wave 
does not depend on the frequency. 

The results for the second-sound dispersion can be extended to the 
case of nondegenerate solutions. In this case the frequency dependence is 
also described by Eqs. (27), (28), (30), and the sound velocity 

2 l ( 0I'I ~ Cp 

(cp and c~ are the heat capacities) is determined using Eq. (28) and the 
identity for the 3He quasiparticle ideal gas 

Note that according to Eq. (28) sound dispersion is always absent 
oN(O)/oN - N(O)/N when ± / 3 -  ± / 3. For this reason the dipole relaxation does not 

cause dispersion in cases of nonpolarized or completely polarized solutions 
and in the Boltzmann region T >> To. As was mentioned in the Section 1, 
usually OJT"d >> 1. 

4.2. Sound Absorption and Second Viscosity 

Second sound in 3He-4He solutions at low temperatures corresponds 
to hydrodynamic oscillations in the impurity system. Such oscillations can 
propagate only at low frequencies oJZex << 1, or, more precisely, o~z+ << 1. In 
polarized solutions, according to Eq. (24), this inequality considerably limits 
the frequency. If one neglects the dipole interaction, the second-sound 
absorption coefficient in He~'-aHe is given by the usual expression for 
sound waves in binary mixtures 1° 

1 D 2 ST  2r4 _1 + :=(oo] (ou) K =]_T (32) 

where p = MN3 and C is the concentration of one of the spin components 
(N+/N3 or N-/N3).  

In degenerate solutions the absorption is determined by the viscosity 
r/, (3), since the second and third terms in Eq. (32) are proportional to the 
small factor cp-  c~. In nondegenerate solutions terms proportional to the 
viscosity, heat conductivity, and spin diffusion coefficients are of the same 
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order and all three terms in Eq. (32) are important. The last term can be 
simplified in the Boltzmann region to the form 

2 2 
Ds 2 N3 

2s~ cpcvKSTN+N- 

In the absence of the polarization the spin diffusion contribution to the 
absorption vanishes, since in this case the spin thermal diffusion ratio Ksr 
is equal to zero. 

The sound attenuation also depends on the dipole interaction. Slow 
hydrodynamic relaxation processes give rise to the second (bulk) viscosity 
~'. In our case the second viscosity coefficient is due to the dipole relaxation 

= ~ , d p [ ( s ~ ) ) 2 _  (s~0))2] 

and the corresponding absorption coefficient is equal to 
2 to 

2os 3 1 + (to.cd) 2 

The positiveness of ~" means that always s ~ ) ~  > s~2 °). As mentioned above, 
in real experimental conditions tora >> 1. Then the relative influence of the 
first and second viscosities on the absorption is specified by the ratio 

17( ('0Td)2 hO') 2p0 ( ~ )  4 10--8 X~T3 (~__) 4 
¢ --f14' a 2N3 

where x is the 3He concentration N3/N4 and to is measured in see -1. This 
estimation shows that in the experiment 2 the increase of the second-sound 
attenuation was caused mainly by the growth of the first viscosity ~/ and 
not by the appearance of second viscosity. Experimentally the contributions 
of the shear and bulk viscosities to the sound absorption can be separated 
by their different frequency dependences: while the absorption due to first 
viscosity is proportional to to2 (tor~,<< 1), the second-viscosity contribution 
does not depend on to (OJrd >> 1). Analogous to the case of second sound, 
the bulk viscosity also may be important for the first-sound attenuation. 

5. CONCLUSION 

The polarization of the 3He spin system completely changes the trans- 
port properties of 3He-4He solutions. The polarization leads not only to 
considerable changes in kinetic coefficients, but also gives rise to important 
new relaxation processes, such as the spin thermodiffusion, bulk viscosity, 
etc. Thus the picture of dissipation in 3He'~-4He solutions is altered. Most 
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of the results obtained above can be applied to other polarized Fermi 
systems. 

One of the important 
parameter  

APPENDIX 

characteristics of 3He-4He solutions is the 

0 ( - A )  N ,  
£1Pl = 2 (A1) 

ON4 m4so 

introduced in Section 3. Here  - A  is the binding energy of a single 3He 
impurity atom dissolved in 4He. This parameter  is widely used and for 
many theories it is a basic quantity (see, e.g., Ref. 11). The accepted value 
a l ~  1.28 is based riot on direct measurements of A but on theoretical 
estimations using the difference of 3He and 4He molar volumes. 

The value of a l  can be obtained from experimental data 2'12 on the 
second-sound velocity in dilute 3He-4He mixtures at low temperature.  The 
second-sound velocity in nonpolarized degenerate solutions (including the 
effects of quasiparticle interactions) is equal to 1 

sZ =s2 ( l +2p__~oa] 2 2m4 (A2) 
~rn J 

--Ol lSo - ~  X 

where sia = po/M~/-3 is the sound velocity in the ideal degenerate quasipar- 
ticles Fermi gas. Substituting into Eq. (A2) the usual parameters of the 
solution at zero pressure, one derives the numerical equality 

(Sid - -  S2)/Sid ~- X 1/310.42(-- a~ 1.5) + 8.9a ~ ] (A3) 

where the scattering length a is measured in/~.  The data of Ref. 2 give 
the following value of O/1 at the scattering length I a = -1 .5 /~ :  

Of 1 ~--- 0 , 0 8  (A4) 

while x = 0.0! .  A similar value of a l  also can be obtained from the experi- 
mental data at the concentration x = 0.003, but in this case the accuracy 
is very low, since the difference sia-s2 becomes very small. The accuracy 
of Eq. (A2) and consequently of the estimation (A4) is about x ~/3. 

The small value of ~l in (A4) compared with the traditional 1.28 is 
not surprising. It is connected mainly with the different scales of the 
quantities in Eq. (32): while A -  2.8 K, the value of m4s~ is about 40 K. 

The new value of a l  enables one to find some other parameters of 
the solutions. It is known from the experimental data on the first-sound 
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veloc i ty  tha t  1 

m4 ( M - m 3 ~  2 M - m a  
OL I + -~- Ol 2 

m 4 / m 4  

This  l eads  to 

02( -  A) N ] 2  _ 0.03 
0l'2~"~- ON 2 m4so 

- 0 . 3  

N O T E  A D D E D  IN P R O O F  

R e c e n t l y  Lhui l l i e r  and  Lalo~ (C. Lhui l l i e r  and  F. Lalo~,  T r a n s p o r t  
P r o p e r t i e s  in a Spin Po l a r i zed  Gas .  Par t s  I - I I ,  J. Phys.  (Paris), 1982) have  
p e r f o r m e d  the  de t a i l ed  s tudy  of the  k ine t ic  equa t ion  and  the  col l is ion 
in tegra l  for  n o n d e g e n e r a t e  d i lu te  sp in -po l a r i zed  gases.  The i r  resul ts  in the  
case of " 1 spm-~ F e r m i  gas co inc ide  with  those  o b t a i n e d  in Sec t ion  2.2. 
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